PILOT SCALE DISTILLATION AND CHARACTERIZATION OF DIESEL FUEL FRACTIONS OF STRATEGIC PETROLEUM RESERVE CRUDE OILS

INTERIM REPORT BFLRF No. 224

Ву

D.L. Morris B.K. Bailey

L.L. Stavinoha

Belvoir Fuels and Lubricants Research Facility (SwRI)

Southwest Research Institute
San Antonio, Texas

AD-A180

and

H.N. Giles
Department of Energy

Office of Strategic Petroleum Reserve

Prepared for

U.S. Army Belvoir Research, Development and Engineering Center Materials, Fuels and Lubricants Laboratory Fort Belvoir, Virginia

and

U.S. Department of Energy Office of Strategic Petroleum Reserve Washington, D.C.

under

Contract No. DAAK70-85-C-0007

Approved for public release; distribution unlimited

February 1987

MAY 2 3 190

K

A

Disclaimers

The findings in this report are not to be construed as an official Department of the Army or Department of Energy position unless so designated by other authorized documents.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DTIC Availability Notice

Qualified requestors may obtain copies of this report from the Defense Technical Information Center, Cameron Station, Alexandria, Virginia 22314.

Disposition Instructions

Destroy this report when no longer needed. Do not neturn it to the originator.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

	REPORT DOCUM	MENTATION I	PAGE			
1a. REPORT SECURITY CLASSIFICATION N/A	,	16. RESTRICTIVE MA	ARKINGS			
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/A	VAILABILITY OF REP	ORT		
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE	,	Approved unlimited	_	ralease	; distribution	
4. PERFORMING ORGANIZATION REPORT NUMBERIS)		5. MONITORING OR	GANIZATION REPORT	NUMBER(S)		
Interia Report BFLRF No. 224	•	•				
60. NAME OF PERFORMING ORGANIZATION Belvoir Fuels and Lubricants	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONIT	ORING ORGANIZATI	ON		
Research Facility (SwRI)						
6c. ADDRESS (City, State, and ZIP Code) Southwest Research Institute		76. ADDRESS (City,	State, and ZIF Code!			
6220 Culebra Road			• 1	,	į	
San Antonio, Texas						
8a. NAME OF FUNDING/SPONSORING ORGANIZATION BELVOIT Research, Development	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT I	STRUMENT IDENTI	FICATION NUM	ABER	
and Panisacrina Contor	STRBE-VF	DAAK70-85-0	C-0007; WD	15	Ì	
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF FUN				
Fort Belvoir, Virginia, 22060		PROGRAM , , ELEMENT NO.	PROJECT NO.1 L2631 04 D150	TASK NO. 7 f	WORK UNIT ACCESSION NO.	
11. TITLE (Include Security Classification)						
Pilot Scale Distillation and Characterization of Diesel Fuel Fractions of Strategic Petroleum Reserve Crude Oils (U)						
12. PERSONAL AUTHORISI						
Morris, D.L.; Bailey, B.K.; S						
	85 TO Feb 87	14 DATE OF REPORT 1987 Febru			AGE COUNT	
	partment of Ene e petroleum sam					
17 COSATI CODES	18. SUBJECT TERMS (Con	have on revene d nec	assau and identify he	Nock oumber		
FIELD GROUP SUB GROUP	Distillation		ategic Petro			
	Dies el Fuel	Cetane Number				
	Crude Oil	Fue:	l Stability			
19; ABSTRACT (Continue on reverse if necessary and identification)	fy by block number)	,		,		
Little, beyond crude assay data including diesel fuel, which might Reserve were actually to be ref from the Reserve and subjected prepared in an attempt to a characterized by ASTM tests an criteria. VV-F-800 is the Federa	t ensue in the evenined. According to distillation in pproximate prod devaluated according to the evaluated according to the eval	ent crude oils ly, eight disti a pilot-scale luction of d ording to the	available at inct crude oi unit. Middle iesel fuel,	the Stra 1 stream distillat and the	ategic Petroleum s were collected e fractions were fractions were	
Results of the distillation effort operating conditions explored. specification requirements and conforming to VV-F-800 can be	The diesel fuel can be expected	s produced e	exhibit cetar ible. The c	ne numbe data indi	ers greater than icate that fuels	
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT		21. APSTRACT SEC		ION		
# UNCLASSIFIED/UNLIMITED : SAME AS RPT	DTIC USERS	Unclassif				
22a. NAME OF RESPONSIBLE INDIVIDUAL		22b TELEPHONE (In		ZZc. OFFICE		
Mr. F.W. Schaekel		(703)664	-17/5	CIDBE	-V t	

19. ABSTRACT (Cont'd)

normal amount of additional upgrading may be required. Recommendations are made to examine such upgraded material, including full-scale engine testing, to demonstrate the power and performance of both treated and untreated fuels.

FOREWORD

This work was performed at the Belvoir Fuels and Lubricants Research Facility (SwRI) located at Southwest Research Institute, San Antonio, TX, under Contract No. DAAK70-85-C-0007, for the period December 1985 through February 1987. Work was funded by the U.S. Army Belvoir Research, Development and Engineering Center, Ft. Belvoir, VA, with Mr. F.W. Schaekel (STRBE-VF) serving as contracting officer's representative. Project technical monitor was Mr. M.E. LePera, STRBE-VF.

ACKNOWLEDGEMENT

The U.S. Department of Energy, Office of Strategic Petroleum Reserve, contributed the crude oil samples to this effort. This study would not have been possible without the support of the U.S. Department of Energy's Deputy Assistant Secretary for Petroleum Reserves, Mr. Richard D. Furiga.

TABLE OF CONTENTS

<u>Secti</u>	on		Page
ı.	INT	RODUCTION AND OBJECTIVES ·····	1
II.	вас	KGROUND·····	3
111.	STA	TEMENT OF APPROACH	4
•	A. B.	Approach · · · · · · Program Plan · · · · · · · · · · · · · · · · · · ·	4 4
IV.	EQU	IPMENT AND MATERIALS	5
	A. B.	Crude Oil Samples · · · · · · · · · · · · · · · · · · ·	5 6
٧.	PRE	SENTATION OF RESULTS	9
,	A. B. C.	Preoperation Shakedown	9 9 10
VI.	DISC	CUSSION	17
VII.		MARY AND CONCLUSIONS	22
VIII.	REC	OMMENDATIONS · · · · · · · · · · · · · · · · · · ·	24
IX.	LIST	OF REFERENCES ······	25
APPE	NDIC	ES	
A. B.		Crude Assay Data From the Federal Register	27

LIST OF FIGURES

Figure		Page
1	Simplified Process Flow Diagram for Distillation Unit	7
2	90% Point Data for Middle Distillate Fractions	
	From SPR Crude · · · · · · · · · · · · · · · · · · ·	20
3	Endpoint Data for Middle Distillate Fractions	
	From SPR Crude · · · · · · · · · · · · · · · · · · ·	21
	LIST OF TABLES	
Table		Page
1	Gravity of SPR Crudes at BFLRF Compared to Other Gravity Data	5
2	Yield Data; Preliminary Distillation of West Hackberry Sweet	,
-	Crude Oil	· 9
3	SPR Crude Distillation Operating Conditions	11
4	Expected and Actual Yields; Distillation of SPR Crude · · · · · · · · · · · · · · · · · · ·	12
5	Analytical Data for Middle Distillate Fractions From SPR Crudes	13
6	Arithmetic Balances for SPR Crude Oil Distillation Runs	14
7	D 2276 Filter Analysis and Trace Metals in Crude Oils	15
٥	COCC SALL SCALES AND THE BANKS OF THE BANKS	17

I. INTRODUCTION AND OBJECTIVES

The Energy Policy and Conservation Act (Public Law 94-163, 22 December 1975), as amended, authorizes the creation of a Strategic Petroleum Reserve (SPR) to store up to I billion barrels of oil for use in the event of an oil import disruption. (1)* Present plans are to achieve a 750-million-barrel goal by expanding three of five existing storage sites and by developing a new site at Big Hill, TX.

The SPR storage sites are connected by pipeline to three marine terminals for oil fill and to additional pipelines for oil drawdown and distribution during an oil-supply disruption:

- Seaway complex: The Bryan Mound storage site is connected to Phillips Petroleum Company's terminal (formerly the Seaway terminal) in Freeport, TX; to the Phillips refinery at Sweeney, TX; and to the ARCO marine terminal at Texas City, TX.
- Texoma complex: The West Hackberry and Sulphur Mines storage sites are connected, and the Big Hili storage site will be connected, to Sun Oil Company's marine terminal in Nederland, TX.
- Capline complex: The Weeks Island and Bayou Choctaw storage sites are connected to the government-owned St. James marine terminal on the Mississippi River; and to the LOCAP pipeline, also at St. James, LA.(1)

Responsibility for overall program management and planning lies with the Department of Energy's (DOE) SPR Program Office in Washington, DC.

The SPR is segregating the crude oil it purchases into four grades or qualities. These grades are light gravity-low sulfur, intermediate gravity-intermediate sulfur, intermediate gravity-high sulfur. As of 31 December 1986, 191 million barrels of light gravity-low sulfur crude were segregated in 19 caverns, with 234 million barrels of intermediate gravity-high sulfur crude segregated in 25 other caverns. A single cavern is dedicated to the storage of 11.2 million barrels of heavy gravity-high sulfur Maya crude, while Weeks Island mine contains the Reserve's entire 73-million-barrel stockpile of intermediate gravity-intermediate sulfur crude.

^{*} Underscored numbers in parentheses refer to the list of references at the end of this report.

During a disruption of crude oil imports to the United States necessitating a drawdown of the SPR, it is probable that transportation fuels refined from SPR crude oil will be acquired by the U.S. military forces. These fuels may be used almost immediately, or they may become a component of prepositioned reserves subject to long-term storage or they may be added to tank farms for relatively short-term storage.

To date, no products have been commercially refined from the segregated SPR crude oil streams. The crude oil sold during a test sale and drawdown in December 1985 and January 1986 was commingled with other crude oil stocks at refineries prior to being processed. While the consensus among refiners is that they will be able to obtain products from the segregated SPR crude oil streams with little or no refining difficulty, no thought or study is known to have been given to additive treatment, storage stability, or upgrading response of these products.

The technical responsibility for research on mobility fuels within the Department of the Army resides at the U.S. Army Belvoir Research, Development and Engineering Center, one of two research centers under the U.S. Army Troop Support Command. The execution of this technology base program is supported by the Belvoir Fuels and Lubricants Research Facility (BFLRF), a Government-owned, contractor-operated laboratory located at the Southwest Research Institute (SwRI) in San Antonio, TX. A primary mission of both the Center and BFLRF is research on transportation fuels used by the U.S. military and NATO allies. BFLRF has performed research on storage of crude oils/finished fuels for DOE's Strategic Petroleum Reserve Office in the 1976-1979 time-frame (2-4), and has developed a computerized crude oil characterization program for the U.S. Army.(5)

Accordingly, the objective of this program was to investigate quality of diesei fuels, distilled from the eight SPR crude oil streams. Each of the crude oil streams was actually a mixture of crude oils, with one exception.

This report details the methods used to produce diesel fuels, the results of tests on their characterization, and provides recommendations for follow-on studies, which should generate further valuable data of interest to the U.S. Army and the U.S. refining industry.

II. BACKGROUND

The Strategic Petroleum Reserve has been storing crude oil since 1977. Crude oil is separated into the rather broad categories of "sweet" and "sour", depending upon sulfur content. Nearly two-thirds of the reserve is high sulfur or "sour" crude, i.e., it contains in excess of one percent by weight of sulfur. Crude oil received through 1986 came from 20 different countries throughout the world. Because of the diversity of crudes purchased for the SPR, there has been concern about compatibility on mixing and stability during mixed storage. Crudes may be mixed through 1) commingling before storage, 2) turbulence during cavern "pump in", 3) diffusion, convection, and gravity during storage, and 4) drawdown exercises or when withdrawing crudes for sale. Partial assays of these <u>crude mixes</u> have been published but only recently has distillation and characterization of significant fuel fractions derived from SPR crudes been performed.

In a July 1985 letter of agreement to DOE from U.S. Army titled "Characterization of Diesel and Aircraft Turbine Fuels From SPR Crudes," it was stated:

- "Over the next 12 months, the SPR will provide BFLRF with 500-gallon (10-barrel) samples of each of the eight SPR crude oil segregations;
- "Using a pilot-plant still, BFLRF will refine these eight crude oil samples to obtain 100- to 200-gallon samples of the fuels of interest for detailed characterization;
- "The refined fuels will be used in limited full-scale engine evaluations and subjected to upgrading to DF-2 quality; and
- "Complete study results will be provided to SPR for review and comment prior to publication."

From December 1985 to January 1986, the Strategic Petroleum Reserve Office (SPRO) conducted a test sale and drawdown on four of the eight SPR crude oil streams. Concurrently, 10-drum samples of each of the eight SPR crude oil streams were collected for use in this work.

III. STATEMENT OF APPROACH

A. Approach

The crudes were to be distilled to provide naphtha, middle distillate, and bottoms fractions. Two of these fractions were simply to be set aside. The middle distillate cut was to be characterized and any difficulties/peculiarities in the distillation effort documented. This was to be a moderate-scale distillation effort rather than a laboratory-scale process. Key chemical properties were to be measured via standard laboratory testing, supplemented by bench testing and, possibly, limited full-scale engine testing.

B. Program Plan

Key activities in this effort included:

- Review and evaluation of present SPR crude inventory and assay relationship to refineability
- Acquisition of samples from the eight SPR crude streams
- Physical/chemical characterization of crude streams (crude assay data)
- Distillation into predetermined fractions and complete characterization of these fractions versus VV-F-800* (6) requirements or other specifications
- Comparison of SwRI distillation yields with crude assay data
- Interpretation of distillate characteristics in terms of refineability
- Interpretation of fuel characteristics in terms of field expedient fuel program requirements and fuel stability

^{*} VV-F-800 is the Federal method which specifies three grades of diesel fuel.

IV. EQUIPMENT AND MATERIALS

A. Crude Oil Samples

Preliminary assay data published in the <u>Federal Register</u> (7) were used for scope and planning purposes and are included as Appendix A. These eight crude oil stream samples are:

- 1. SPR West Hackberry Sweet
- 5. SPR Bayou Choctaw Sour
- 2. SPR Bryan Mound Sweet
- 6. SPR Bryan Mound Sour
- 3. SPR Bayou Choctaw Sweet
- 7. SPR Weeks Island Sour
- 4. SPR West Hackberry Sour
- S. SPR Maya

A complete crude oil assay of each SPR crude oil stream was performed by the National Institute for Petroleum and Energy Research (NIPER). These results are included as Appendix B, and it is noted that the NIPER samples were collected separately from those employed in this work.

Initial tests of the delivered crude samples (measurement of API gravity) indicated consistent quality of crude from drum to drum for each sample. Results are shown in TABLE 1. Comparison of these data to both the preliminary and NIPER assay data was excellent and indicated that all samples were properly labeled and identified.

TABLE 1. Gravity of SPR Crudes at BFLRF Compared to Other Gravity Data

				API	Gravity		
Crude Oil Name	BFLRF No.	By I	Orum Num	nber 10	BFLRF Avg.	NIPER Data	Federal Register
Bayou Choctaw Sour Bayou Choctaw	1072C	33.3	33.3	33.3	33.3	33.6	31.0
Sweet	1071C	36.3	36.3	36.3	36.3	36.5	36.2
Bryan Mound Maya	1058C	22.8	23.4	22.9	23.0	22.9	22.1
Bryan Mound Sour	1059C	32.7	32.6	32.6	32.6	31.5	33.2
Bryan Mound Sweet	1060C	36.5	36.6	36.7	36.6	36.0	36.2
Weeks Island Sour	1073C	28.9	23.9	28.9	28.9	28.9	29.7
W. Hackberry Sour	1064C	33.4	33.5	33.4	33.4	33.1	33.1
W. Hackberry Sweet	1065C	38.1	37.9	38.1	38.0	38.1	37.0

All crude charged to the system was prefiltered through a 40-micron sock filter to remove particulate matter and to provide some dewatering of the otherwise untreated crude oil. The crudes were not desalted as is the conventional practice for a normal refinery because the hardware capability was not available. The salt and water contents of crudes stored in the SPR were known to diminish with time as a result of settling out due to gravity; the concentrations of salt and water in the samples used in this program were not determined. The volume of filtered crude charged to the system feed tank was measured by a level gauge on the tank.

B. Pilot Plant Distillation Apparatus

A simplified flow diagram of the continuous pilot plant distillation apparatus used in this study is presented as Fig. 1. The design and construction of the apparatus have been described previously. (8) The distillation system modules are illustrated in Fig. 1, and the operating procedure is described below. The eight modules of the distillation system are:

- Feedstock storage and delivery
- Distillation column
- Inert gas delivery
- System pressure control
- Overhead distillate recovery
- Overhead product storage
- Bottoms product recovery
- Bottoms product storage

The feedstock storage and delivery module consists of a 350-gallon stainless steel tank, feed pump, flow meter, feed preheater, and associated piping and valving. The column module includes five separate feed port locations along the length of the column, a rectification furnace (top half of the column), a stripping furnace (bottom half of the column), a reboiler, and reboiler furnace. The column is 13 feet in height and is packed with Goodloe packing. Inert gas feed to the column is regulated, metered, and introduced to the column through the reboiler.

The overhead distillate recovery system consists of an overhead vapor condenser, a gas liquid separator, a reflux splitter which diverts condensed liquids either back to the

Figure 1. Simplified process flow diagram for distillation unit

PRODUCT TRANSFER PUMP column or to product collection, an overhead product receiver (5-gallon capacity), and an overhead product pump. The system pressure control is an extension of the overhead distillate recovery module that has a vent or vacuum port connected to the gas/liquid separator. Pressure is controlled with a vacuum pump and bypass control valve. The bottoms product recovery module consists of a bottoms product cooler, bottoms product pump, flow meter, and recycle line.

The overhead product storage module (not shown in entirety) receives distillate product through the overhead product transfer pump. This module also includes a product transfer pump. The bottoms product storage module (not shown in entirety) receives product through the bottoms product pump directly from the column and includes its own transfer pump. The product storage tanks are 250-gallon capacity each.

System conditions are controlled by a computer which monitors system temperature, flow rates, and pressures. The computer software package provides interactive communication with the process, time event programming, and data logging features. Material balances were aided by volume level gauges on the feed tank, overhead product receiver, bottom product storage tank, and overhead product storage tank.

Operating conditions of record included feed rate, preheater temperature, rectification temperature, stripping temperature, and reboiler temperature. The feed rate (gallons per hour) was controlled by a meter setting on the feed pump. This was adjusted to provide maximum flow rate at desired preheater temperature without stressing the heat duty of the preheater beyond 90 percent. The rectification temperature is the control setting for the rectification furnace, which adds heat to the top half of the column. The stripping temperature is the control setting for the stripping furnace, which adds heat to the bottom half of the column. The reboiler temperature is the control setting for the reboiler furnace which adds heat to the reboiler pot. The reboiler is attached to the bottom of the column, and a liquid level is maintained in it to control flow to the bottoms product storage tank. Nitrogen stripping was used in each run to assist in removing light components from bottoms fractions. The overhead product reflux ratio was varied from 1:1 to 5:1 (reflux:product).

V. PRESENTATION OF RESULTS

A. Preoperation Shakedown

Because no crude oils had previously been distilled with the unit, the distillation apparatus was taken through a preoperation evaluation. Several minor repairs were required as preparation for operation. A special feed and filter system for handling crude oils was designed along with a heat-traced bottoms-handling system. The column was also equipped with a vacuum system to permit lower temperature distillation of crude oils. As a shakedown run of the modified unit, diesel fuel used in another BFLRF program was distilled in 25 vol% increments. Following this shakedown, and completion of other modifications to the column to allow operation with crude oil, West Hackberry Sweet crude oil was charged to the unit for the initial run.

B. Results of Preliminary Test Run

West Hackberry Sweet crude oil was chosen for the initial run because it represented the "lightest" (or lowest gravity) of the sweet crude oils. Accordingly, it was expected to be the easiest crude oil to process. Minor problems with the electrical, vaccum, and feed pump systems, piping, and computer control were encountered in this initial run. While these problems individually were not significant, together they resulted in an unsuccessful test run. The data in TABLE 2 resulted from the first attempt to distill crude oil using this system.

TABLE 2. Yield Data; Preliminary Distillation of West Hackberry Sweet Crude Oil

Description	Yield	Data	D \$6	Data	Gravity,
1	gallons	A0108(1)	IBP, OF (OC)	EP, OF (OC)	
Naphtha	25	23.6	38 (31)	492-494 (255-257)	59.3-60.4
Topped Crude (unprocessed)	3	2.8	NA	NA .	NA ,
Dist. No. I	2.5	0.5	NA	NA ·	NA
Dist. No. 2	2	1.9	213 (100)	456 (236)	47.5
Dist. No. 3	1	0.9	274 (134)	501 (260)	41.7
Dist. No. 4	4	. 3.8	238 (142)	494 (257)	44.1
Dist. No. 5	4	3.8	423 (217)	590 (310)	37.7
Dist. No. 6	12	11.3	454 (234)	651 (344)	35.3
Bottoms	30 -	23.3	380 (193)	NA(2)	27.3
Unaccounted for(1) Total(1)	126.3	$\frac{23}{199.9}$			

⁽¹⁾ based on two drums charged to still at 53 gallons per drum.

⁽²⁾ cracked at 720°F (382°C).

No attempt was made to reconstitute a 350° (177°C) to 650°F (343°C) fraction from distillate samples! through 6, nor was any VV-F-800-type analysis of a distillate oil or reconstituted blend attempted. This is because the wide range of D 86 data for the six samples, plus the large amount of material lost or unaccounted for (23.1 vol%), raised a serious question concerning the representativeness of these samples. The tabulated results thus indicated that a redistillation of West Hackberry Sweet would be necessary if project objectives were to be met.

Because the pilot distillation column is only capable of making a single fractionation per pass, it was necessary to collect a naphtha fraction in the first pass and then redistill the bottoms product from that run to obtain the desired boiling range product. In the case of two crude oils (Bryan Mound Sweet and Maya), this procedure was modified by removing both the naphtha and diesel fuel fraction in the first pass and then the naphtha was split from the diesel fuel fraction in the second pass.

C. Distillation of Eight SPR Crude Oil Streams

A total of 2.5 to 10 gallons of distillate product in the DF-2 boiling range were prepared from each of the eight SPR crude oil mixes. Characterization of these materials was conducted using standard ASTM methodology. All distillate samples were stored in a cold box, as were the naphtha fractions, in order to minimize deterioration of products prior to analysis. The one sample of middle distillate from West Hackberry Sweet originally prepared under less than optimal operating conditions was replaced by repeating the distillation of West Hackberry Sweet crude oil. The column operating conditions employed during distillation of the eight crude oils are presented in TABLE 3. TABLE 4 represents a comparison of actual to expected yields based on crude assay data. Analytical data for middle distillate fractions obtained are presented in TABLE 5. Arithmetic balances performed on certain chemical/physical oil properties are shown in TABLE 6. Trace element content of the crude oil mixes and filterable particulates from the middle distillate fractions are provided in Table 7. The 80°C storage stability test date are included in TABLE 8. Because of the relatively small quantities of middle distillate actually refined from each of the eight crude oil streams, it was not possible to perform any full-scale engine evaluations or to upgrade any of the samples to DF-2 quality. Despite this, conclusions based on the quality of straight-run middle distillate fuels refined from SPR crude oil streams are useful in evaluating the quality of fuels that can be produced by a refinery using the same feedstock.

TABLE: 3. SPR Crude Distillation Operating Conditions

	Crude Oil Name: West Hackberry Sweet Sample No.: FL-1063-C	West Hackberry Sweet FL-1065-C	Bryan Mound Sweet FL-1060-C	Bayou Choctaw Sweet FL-1071-C	West Hackberry Sour FL-1064-C	Bayou Choctaw Sour FL-1072-C	Bryan Mound Sour FL-1059-C	Weeks Island Sour FL-1073-C	Bryan Mound Maya FL-1058-C
ž	NAPHTHA RUN								
	Feed Rate, gph Preheater Temp., oF(°C) Rectification, oF(°C) Stripping, oF(°C) Reboiler Temp., oF(°C)	5.0 400(204) 425(218) 425(218) 450(232)	7.2 375(191) 400(204) 400(204)	5.5 400(204) 400(204) 410(210) 425(218)	5.5 385(196) 385(196) 4[5(213) 425(218)	5.5 385(196) 400(204) 400(204) 425(218)	5.5 400(204) 410(210) 425(218) 450(232)	5.5 406(204) 425(218) 425(218) 450(232)	7.3 375(191) 410(210) 410(210)
	Reflux Ratio	:: ::):: 	1:1	1:¢	5:1	5:1	5:1	2:1
	Pressure, psi	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7
	Nitrogen Stripping	Yes	Yes	Yes	Yes	Yes	Yes	High	Yes
	Comments		(Run Second)						(Run Second)
. <u>a</u>	DISTILLATE RUN	,							
	Feed Rate, gph Preheater Temp., ºF(°C) Rectification, ºF(°C) Stripping, ºF(°C) Reboiler Temp., ºF(°C)	4.0 550(288) 580(304) 590(310) 625(329)	4.0 \$00(260) \$15(268) \$70(299) 625(329)	3.3 515(268) 525(274) 550(288) 600(316)	3.5 525(274) 525(274) 540(282) 610(321)	\$25(274) \$20(304) \$90(310) 620(327)	3.5 525(274) 580(304) 590(310) 625(329)	3.0 550(288) 580(304) 590(310) 625(329)	2.5 550(288) 580(304) 590(310) 625(329)
	Reflux Ratio	74	3:1	ā	2:1	=======================================	Ξ	Ξ	=
	Pressure	14.7	7.0	7.0	9.0	14.7	14.7	14.7	14.7
	Nitrogen Stripping	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Cornments		(Run First)					•	(Run First)

TABLE 4. Expected and Actual Yields; Distillation of SPR Crudes

Crude Oil Name: Sample No.1	West Hackberry Sweet FL-1065-C	Bryan Mound Sweet FL-1060-C	Bayou Choctaw Sweet FL-1071-C	West Hackberry Sour FL-1064-C	Bayou Choctaw Sour FL-1072-C	Bryan Mound Sour FL-1059-C	Weeks Island Sour FL-1073-C	Bryan Mound Maya FL-1058-C
Expected Naphtha Yields ¹ ,			٠					
vol%	6.3	4.6	6.4	4.4		2.5		3° C
1750-2500F (790-1210C)	9.4	8.3	8.3	13.6	7.4	13.6	9.01	10.2
Subtotal Naphtha	29.2	25.9	25.6	25.4	24.6	24.1	. 9.61	18.9
Expected Middle Distillate Yields, Vol% 3759-5309F (1910-2770C) 5300-6509F (2770-3430C)	16.4	. 16.8	15.6	16.3	16.4	16.5	15.0	9.11
Subtotal Middle D'stillate	28.7	29.8	27.3	28.3	28.4	28.4	27.3	21.1
Actual Naphtha Yields ² , vol% Naphtha Naphtha as % Expected	33.1 113.4	27.3 105.4	26.6 103.9	25.8 101.6	26.4 107.3	25.6 106.2	24.7 126.0	8.401
Actual Middle Distillate Yields ² , vol% <3750F (<191 ^o C) Component	0.0	0.0	6.0	6.0	0.0	0.3	0.0	0.2
3750-5300F (1910-2770C) Component >5300F (>2770C) Component	5.1.	4.41	14.4	14.2	13.8 2.3	15.0 4.5	10.3	9.3
Subtotal Middle Distillate	16.9	16.0	16.0	. 15.6	1.91	19.8	15.3	11.2
Distillate as % Expected ³	99.0	5.46	0.66	7.68	95.9	100.5	111.5	89.9
Middle Distillate, D 86, oF (°C) 10% 10% 30% 50% 70% EP	342 (172) 435 (224) 459 (243) 499 (259) 531 (277) 589 (309) 666 (352)	378 (192) 403 (206) 423 (217) 448 (231) 475 (246) 529 (276) 602 (317)	343 (184) 396 (202) 422 (217) 446 (230) 473 (245) 519 (271) 580 (304)	302 (150) 389 (198) 419 (215) 442 (228) 465 (241) 497 (258) 538 (281)	374 (190) 402 (206) 429 (221) 454 (234) 485 (252) 548 (287) 662 (350)	364 (184) 400 (204) 436 (224) 508 (241) 508 (264) 585 (307)	419 (215) 472 (253) 479 (248) 505 (263) 504 (279) 606 (319)	366 (186) 404 (207) 425 (218) 486 (223) 486 (292) 653 (345)

Analysis provided as current SPR data as of 19 September 1986.

² Provision was made to intentionally produce "excess" naphtha in order to increase the initial boiling point of distillate product. The distillations of FL-1060-C and FL-1058-C were exceptional because they involved a combined naphtha-distillate overhead followed by redistillation. Every distillation was made on a single drum quantity of crude oil except FL-1060-C (2 druins).

3 Based only on 3750-530°P (1919-277°C) components compared to expected yield of a similar fraction, and restated to include distillate contained in the naphtha.

TABLE 5. Analytical Data for Middle Distillate Fractions From SPR Crudes

	VV-F-800C	8000	į	Br. Cab	Buyon	Vest	Bayou	Bryan	Weeks	Bryan
CIONE OU NAME:	The same		Hackberry	Mound	Chactaw	Hackberry	Choctaw	Mound	Island	Mound
Sample No.:	DF-1	DF-2	Sweet FL-1065-C	Sweet FL-1060-C	Sweet FL-1071-C	FL 1064-C	Sour Fr-1072-C	FL-1059-C	FL-1073 C	FL-1058-C
Visual, D 4176		Clean/	Sed/		Sed/	Sed/	Clean/	Sed/	Zed.	Č
0001 0	Bright	Bright	H42y	Durk 7.0	Brig. 1430.3	Bright 0.5	5.0 5.0). S 4 & . S	1.0 0.1	∨ 2. 0
Particulate Containmation,	•	Í	: :	<u> </u>	!		:		;	,
D 2276, ing/L	- 10.0, max	10.0, max	65.7	7.67	5.8	*	59.3	255.	?:	77.767
Accelerated Stability, D 2274,			ĉ	7.1	6.5	0.3	0.6	9.0	0 .	0.4
Lotal Insolubles, mg/100 mL		1.7, 1932	;	:	;					
mod to out	1.5 60.41	1.5. 10.48	1.0	3. 3	9.0	0.	9. 0	0.5	o.	* .
Elich Bourt Day of	38, 1010	32, 000	7.	2.3	<i>(</i> 3	07	89	29	8.2	39
Cloud Parat D 2360, 9C	100	ارة ا	91-	-37	-32	19-	-20	2 7	9	Too Dark
Pour Point, D 97, oc	Report	Report	-22	<i>u</i> -	% -	14-	-11	≈	*	76-
Kinematic Viscosity at 400c.	•							,	,	ć
1) 445, cSt	1.3-2.9		7.4	5 .	6:1	9.	6.	7.7	1.7	0.7
Kinematic Viscosity at 540C,	٠					:	:		1 6	7.1
D 445, 75t	ž		<u>.</u>	<u>:</u>	?	<u>:</u>	<u>.</u>	•	.,	<u>•</u>
Carbon Residue, 10% Bottoms,	•		;		9	30	2	***	0.07	0.2500
D 524, mass%	0.15, m.sk		=	<u> </u>	3	90.0	•	·	;	ì
Sulfur, X-Ray Photesienie,	;		500	61.0	9	60.0	**	99.0	0.52	0.56
4,000	KT 10.70	20,00	50.0	7	2.5	Took	Sweet	Sweet -	Sweet	Sour
Doctor lest, UOP 41-74	<u> </u>									
Mercaptan Sulluf, D 3227.	2	2	0.6003	0.00 34	0.0023	0.0030	9,000	0.0043	0.00%	0.00
9.55Pul	4	<u> </u>								
Copper Corrosion at 30°Cs	1	A mean	~	<u><</u>	<u><</u>	Ķ	<	<u><</u>	<u><</u>	<u><</u>
10 10 10 10 10 10 10 10 10 10 10 10 10 1	130	6.61. max	10.0	10.0	10.0	0.03	0.0	< 0.01	0.01	0.01
ASB, D 464, 10455 4								•		
Lotal Acid Number, 17 774,	, 2	2	60.0	0.607	0.007	0.067	0.018	0.021	0.040	0.021
K MORI/S Sample	1 0 4 T	1	; ;	~	2	2.5	2	\$	25	25
Cetale Number, 17 613			: =		9	· =	. 20	20	4	27
Cetaire Index, D 970-50	utus *C *		;	:	:	:		•	!	•
Distriction, 17 Sc.	3	Being	259	231	730	228	-96-2	242	763	233
10 m	2X8 max	33% 1942	303	716	172	258	287	30,	319	262
Fod Pouri	336, 111.43	170, 11,48	711	317	*O¢	781	330	3 63	3 66	5
Kesselve, solle	3, 111.18	3, 111.48	2.0	0.1	J.0	9	<u>.</u>	• •	o :	0.
Aniline Point, D 611, oc.	ž	¥Z	68.2	9.99	0.99	64.2	66.5	66.7	65.5	65.0
Gravity, JAPI, 17 1298	ž	ž	7.7	\$0.6	#0.# 0.00		\$ C		2.5	7.0
Density, D 1298, hg/L	Report	Report	0.5	0.522	0.870	9	0.4.0	***	;	***
Water and Sedunent,	•	;				•	9		•	č
1) 2709, vol%	z Z	ž	5.5	6.6	3	2	?		è	5
Karl Fischer Water,	:	;				-	9.0	Ē	· · · ·	5
D 1744, ppen	ž	ž	7.7	? .	; ;	9 6		: 5		000
Salt, 1b/1000 bbi • •	ž	¥2:	* ;			3		, e	, ,	4 42
Aromatics, D 1319, vol9	ž	ž	1.07	7:5	• •					
Oletins, D 1319, vol'8	ž	ž	· <u>ب</u>	: ;	3	9 5	• ;	•	3	÷
Saturates, D 1319, volt	ž	ž	2.3	4.6/	13.1	(7.7	6.9	•	63.3	4.3
Aromatic Carbon, mass&	:	:		, ,	9	61 91	9, 01	7 73	7.75	7871
Mono	œ a	ž	4.95	2.6	26	1.7	1.50	3.59	5.24	/ 97.7
ā	ž	ž	20.0		3.0	500	0.28	0.40	35.0	0.36
Tra	¥Z.	ž	ć. j	•	;	;	;	;	?	;

Reference MIL-5-3 9021, multiflass tronal additive only.
 Sumple faltered before festing.
 NIPER data.
NR. No Requirement.

TABLE 6. Arithmetic Balances for SPR Crude Oil Distillation Runs

Crude Oil Name: Sample No.:	West Hackberry Sweet FL-1065-C	Bryan Mound Sweet FL-1060-C	Bayou Choctaw Sweet FL-1071-C	West Hackberry Sour FL-1064-C	Bayou Choctaw Sour FL-1072-C	Bryan Mound Sour FL-1059-C	Weeks Island Sour FL-1073-C	Bryan Mound Maya FL-1058-C
• Gravity, ^o API								
Observed Value	38.1	9.0	40.9	43.1	40.9 0	40.1	35.7	40.2
3750-5300F	27.9	36.0	36.27	38.05	35.5	31.44	26.25	33.21
\$300-6500F Total of Calculated Values	10.2	39.4	2.80	1.06	4.7	39.70	10.20 36.45	38.89
Difference, OAPI	-0-	+1.2	6.0+	1.0	+0.7	+0.4	-0.75	+1.31
• Sulfur, XRF, mass%							/	
Observed Value	60.0	0.12	0.10	0.27	0.34	94.0	0.52	0.56
Calculated Value, < 37 50F	0	0	0.00	0.002	0	0.001	0 0	0.005
3/30-530°F 5300-6500F	0.03	0.026	0.021	0.033	 • 1.0	0.259	0.278	0.304
Total of Calculated Values	01.0	0.098	0.075	0.326	0.41	0.578	0.473	1.098
Difference, mass%	-0.01	+0.022	+0.025	-0.056	-0.07	-0.118	+0.047	-0.538
• Aniline Pt, ⁰ F								
Observed Value	154.8	151.5	150.8	147.8	151.7	152.1	149.9	149.0
Calculated Value, <3750F	0	0	2.4	7.4	0 [60	0	2.3
3750-5300F	8.66 7 04	130.9	20.3	132.7	22.9	36.5	20.0	23.1
Total of Calculated Values	4.641	147.5	146.3	145.3	146.6	148.2	142.5	143.1
Difference, ⁰ F	+5.4	0-4+	+4.5	+2.5	+5.1	+3.9	•7.4	+5.9
 Cetane Index 			٠	•				
Observed Value		87	64	51	20	8	82	84
Calculated Value, < 3750F	0	0	¥ Z	٧	0	ž	0	< Z
3750-5300F	32.7	42.38	42.86	45.84	42.53	37.73	30.50	39.10
5300-6500F	15.8	5.27	4.31	1.64	7.26	1.51	15.68	7.31
Total of Calculated Values	48.5	47.65	47.17	47.48	49.79	42.64	46.18	14.41
Difference	+2.5	+0.35	.1.83	+3.52	+0.21	+0./6	+1.54	+1.37

NOTE: Difference : observed value - calculated value.

TABLE 7. D 2276 Filter Analysis and Trace Metals in Crude Oils

Crude Oil Name:	West Hackberry	Bryan Mound	Bayou Choctaw Sweet	West Hackberry Sour	Bayou Choctaw Sour	Bryan Mound Sour	Weeks Island Sour	Bryan Mound Mava
FL-Code:	1065-C	D-0901	1071-C	D-4901	H072-C	1059-C	1073-C	1058-C
D 2296 Filter Analysis*, Metals, X-Ray Fluorescence, mass%								
Iron		0.21	10.60	6.70		6.10	16.00	5.65
Sulfur	,	9.60	2.00	<0.01		<0.01	<0.01	0.19
Chlorine		<0.01	< 0.01	9.20		0.10	2.10	0.04
Tin		< 0.01	0.19	19.0		0.01	2.90	10.0>
Calcium	0.01	0.13	01.0	<0.01	<0.01	<0.01	0.31	<0.01
Vanadium		91.0	<0.01	< 0.01		< 0.01	<0.01	<0.01
Chromium		<0.01	0.12	0.65		0.01	0.07	0.01
Manganese		<0.01	0.62	<0.01		0.13	0.64	0.07
Nickel		<0.01	<0.01	0.35		<0.01	<0.01	<0.01
Zinc		< 0.01	0.05	0.02		<0.01	0.03	<0.01
Trace Metals in Crude Oil, X-Ray Fluorescence, ppm by mass			·	,				
fron	94.0	3.05	1.69	1.83		<0.03	0.28	0.73
Copper	<0.02	< 0.02	<0.05	< 0.02	< 0.02	<0.02	<0.02	<0.02
Zinc	0.08	< 0.07	0.14	0.24		0.01	0.0	0.19

TABLE 8. 80°C Storage Stability Test Results

<u>.</u> 1	ادة ادة الم	790	0.2 - 0.1 2.6 2.0	~~ ~ ~ ~	
ks Island Sour	107.5-C 7B 2d Treated	2.0	99944	0.2 0.2 3.6 1.5	2.6 2.6 2.0 2.0
Wee	1073-C 1073- 7B 7B 7B	0.1	0.2 0.3 2.8	0.3	2.1 2.4 2.6 2.0
Mound	1059-C 6C Treated*	0.2 0.2 0.4 12.0	0.1	0.5 0.5 0.6 3.5 3.5	. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bryan So	1039-C 1039-C 6C 6C Universited	0.2 0.2 0.4 12.1 3.5	9.7	0.3 0.4 0.7 1.71 3.0	0 0 - Z # # 4 - O
hoctaw	1072-C 5C Treated	0.9 0.3 23.8 5.0	0.1 0.2 35.1 5.0	0.2 0.5 5.0 5.0	0.6
Bayou C	1072-C 1072-C 5C 5C Untreated Treated*	0.3 0.2 24.0 5.0	0.1 0.2 35.8 5.0	0.0 0.0 4.3 25.2 4.5	0.7 0.7 26.4 6.5
ckberry	1064-C 1064-C 48 48 Untreated Treated*	000-00-00-00-00-00-00-00-00-00-00-00-00	0.2	0.2 0.3 0.5	0.00
West Ha	1066-C 48 Untreated	0000.0	0000.2	0.0000	00.53
hoctaw	1071-C XC	0 0 0 7 4 7 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.2 0.5 16.2 3.0	0.2 0.2 0.4 15.9
Bayou (1071-C X Untreated	00.0	0.2	0.3 0.5 0.8 1.6.1	0.2 0.2 0.4 0.4 7.5
Mound	1060-C 2C Ireated	0.2 0.1 27.6 6.0	0.0 0.4.0 0.4.0 0.0.9	2.3	2.0 0.7 2.7 28.4 6.0
Bryan	1060-C 2C Untreated	0.2 0.1 29.4 5.0	4.5 2.0 26.3 26.3	2.3 0.6. 2.9 25.0	3.1 0.6 3.7 25.4 5.0
ckberry	1065-C 18 Treated*	00.1	0.1 0.5 2.6	1.9 0.5 2.6 2.0 1.0	0.2
¥ es	1065-C 18 18	0.2.1	0.1	1.0 0.3 2.0 1.0	0.0 0.0 0.0 0.0 0.0
Crude Oil Name:	FLCode: 1065-C Run No.: 18 Unitesie	6 Day Fitterable Insolubles, mg/100 mL Malerent Lischaftes, mg/100 mL Total Insolubles, mg/100 mL Steam Jet Gun, D 381, mg/100 mL Color, D 1500	3 Days Filterable Insolubles, mg/100 mL Adverson Insolubles, mg/100 mL Total Insolubles, mg/100 mL Steam Jet Gum, D 381, mg/100 mL Color, D 1500	Filterable Insolubles, mg/100 mL Cr. Adherent Insolubles, mg/100 mL Total Insolubles, mg/100 mL Steam, Det Gum, D 381, mg/100 mL Color, D 1500	14 Days Filterable Insolubles, mg/100 mL Adhrerent Insolubles, mg/100 mL Total Insolubles, mg/160 mL Steam 3et Gun, D 381, mg/160 mL Color, D 1500
	• .	Filtera Adhere Total I Steam Color,	Filtera Adhere Fotal Steam Color,	Filtera Steam Steam Culor,	Filtera Adhere Total I Steam Color,

• Reference MIL-5-53021, multifunctional additive only. NOTE: Bryan Mound Maya not stored due to insufficient sample volume.

VI. DISCUSSION

Expected yields as calculated from crude assays provided by NIPER are compared against actual yields in TABLE 4. The target product was the fraction of crude oil boiling from 375°F (190°C) to 650°F (343°C). Separation efficiencies were less than anticipated and, therefore, some of the material boiling above 375°F was collected in the naphtha fraction and not all material boiling up to 650°F was collected in the diesel fuel fraction. Recovery of all the 650°F material in commercial refining operations is also a problem unless the column is running at optimum conditions.

The eight middle distillate samples collected fall within a range of 302°F (150°C) to 419°F (215°C) initial boiling point and 538°F (281°C) to 696°F (369°C) end point as measured by ASTM D 86 distillation. Based on these results and the available crude assay data, data for the products obtained are in apparent agreement with expected values, with the exception of a poor sulfur balance for middle distillate derived from Maya crude (TABLE 6). Additional samples of the Maya middle distillate fraction were evaluated, but no satisfactory explanation for the discrepancy has been identified.

As a general check of distillation efficiency, a material balance was run on the 375°F (190°C) to 530°F (277°C) fraction reported in the crude assay, as complete recovery of this material should be evident in either the naphtha or the diesel fuel fraction. Material balance calculations were made from a combination of total product recovery from distillation operations and the ASTM D 86 distillation curves for the recovered products. The fraction recoveries for both the naphtha and middle distillate are presented in TABLE 4. Actual yields of naphtha were consistently higher than assay because some of the 375° to 530°F fraction was also collected in this cut. This is particularly true of the West Hackberr; Sweet and Weeks Island Sour crudes in which the naphtha run temperatures were higher than other runs, based on data in TABLE 3.

The material balance for the middle distillate fractions (375° to 530°F) ranged from 90-to 112-percent recovery. Deviation of these recovery figures from the expected 100 percent can be attributed to measurement errors. Relatively small quantities of each diesel fuel fraction were collected, and the total feed was determined by difference of what remained in the feed tank and the column and the amount collected in the bottoms storage tank. This was compared against the quantity collected as product. The

combination of losses in the column and the measurement of relatively small quantities in large tanks added error to the calculations. The other source of data for the material balances is the ASTM D 86 distillation. This method is a less efficient distillation than the ASTM D 2892 and D 1160 methods used for the crude assays and, therefore, is not directly comparable. Considering these error sources, and discounting measurement errors, recovery of the middle distillate fractions matched that documented in the crude assays. Based on the data presented in TABLES 4 and 5, both DF-1 and DF-2 can be refined from SPR crude oil streams. Some upgrading will likely be necessary, however, to ensure that products fully conform to VV-F-800 specifications.

All products exhibited good accelerated stability (D 2274 in Table 5) following treatment with a multifunctional additive. Even in the absence of the additive, seven of the eight products had good accelerated stability, and these trends were confirmed by 80°C storage stability test results (Table 8). The cetane numbers and cetane indexes of all products exceeded the minimum requirements for both DF-1 and DF-2.

While the flash point of West Hackberry Sour was unacceptably low, this product also had the lowest initial boiling point (IBP). Consequently, the flash point could be raised by taking a larger naphtha cut, effectively raising the IBP. The kinematic viscosity of West Hackberry Sour was also the lowest of the eight streams, but an upward adjustment of the naphtha cut-width to raise the flash point and IBP would also raise the viscosity. Copper strip corrosion for the West Hackberry Sour product exceeded the specification maximum, perhaps as a consequence of corrosive mercaptans being present in the lower boiling fraction of the product. This would be consistent with the makeup of the stream that is known to contain crude oil with a relatively high content of mercaptans. Once again, a higher IBP may mitigate this problem for DF-1 and DF-2 products.

All products met DF-2 requirements for carbon residue of the 10-percent bottoms, and only Bryan Mound Maya and Bayou Choctaw Sour products failed to meet the more stringent DF-1 requirements.

The ash content of West Hackberry Sour and Bayou Choctaw Sour products exceeded the DF-1 and DF-2 maximum of 0.01 mass%. The high ash content of these two samples does not appear to be related to the trace elements content of the samples (TABLE 7), as other product samples have higher trace elements but lower ash contents.

In TABLE 6, the deviation between observed and calculated values for aniline point is positive in all cases and represents an apparent bias. This bias results from an assumption of uniform distribution of aromatic compounds throughout the boiling point range of each fraction collected for analysis. In fact, there is no such even distribution across the fractions. Therefore, the <u>calculated</u> "contribution" of aniline point from each fraction whose sum comprises the observed value is directionally low. Thus, the <u>difference</u> between observed and calculated values is directionally high. A similar bias may account for the positive deviation between observed and calculated values for cetane index. As noted earlier, an unexplainably large difference exists between observed and calculated values for sulfur content of the Bryan Mound Maya product.

Iron and other trace elements were present in moderate amounts in the products from all eight SPR crude oil streams (TABLE 7). This is not an unexpected result but is typical of refinery experience wherein an overhead condensor for a distillation tower, or product rundown pipelines, are corroded through contact with hot corrosive vapor, resulting in the presence of scale in products. Certainly, the relatively high iron content of all but the Bryan Mound Sweet product would be expected from corrosion of steel. The high sulfur content of the Bryan Mound Sweet product, relative to other trace elements, may be a manifestation of the product's instability. Bryan Mound Sweet product had, by far, the greatest quantity of total insolubles in the accelerated stability test of untreated samples.

The chlorine present in some samples may result from salt entrained in the crude oil and hydrolyzed during distillation. This commonly occurs in refinery distillation operations and is cause for extensive use of desalting equipment. The copper corrosion value of 3a for the West Hackberry Sour product, the highest of the eight, may have been caused by a combination of the presence of corrosive sulfur and chlorine compounds, such as mercaptans and hydrochloric acid, respectively. The presence of most of the other trace elements can be explained by the presence of scale, salt, and sediment entrained in the crude oil. The presence of tin in one product is inexplicable, but may be due to contamination of the crude during collection or contamination of product during handling.

Normally, salt and sediment are removed at a refinery prior to the crude being processed, which would lower the trace element content of products. Desalting equipment was not, however, available for this project.

Variation among certain fuel properties can be accounted for not only by differences in the crude oil makeup of each of the SPR streams, but also by the wide range of operating conditions employed. For example, middle distillate produced from W. Hackberry Sour crude is close to meeting DF-1 criteria, and examination of the operating conditions shows that the processing used to manufacture this material was indeed quite mild. In other cases, yield of material was nearly maximized, but at the expense of having to sacrifice fuel quality. Fig. 2 and Fig. 3 compare distillation cutpoints to the common specification limits of VV-F-800.

In summary, DF-1 and DF-2 can be made from SPR crude oils, but some upgrading will be necessary to ensure that products meet the requirements for sulfur and corrosion.

Figure 2. 90% point data for middle distillate fractions from SPR crude

Figure 3. Endpoint data for middle distillate fractions from SPR crude

VIL SUMMARY AND CONCLUSIONS

Diesel fuel fractions were produced from each of the eight Strategic Petroleum Reserve crude oil streams using a pilot-scale distillation column. The usual trade-off between fuel quality and quantity (distillation range) was in evidence throughout the work and reflects the variable operating conditions. Operation over a range of conditions was explored successfully.

The distinction between the ASTM D 86 data (on distillates) as employed in this program and the D 2892 distillations (on crude oil) carried out at NIPER for fractions boiling up to approximately 650°F (343°C) influences the interpretation of data. The former test consists of a single-plate column operated without reflux, while the latter test encompasses 15 theoretical plates and 5:1 reflux ratio. A comparison of data from the two sets of work must be made with this major difference always in mind. Also, the crude oil samples analyzed at NIPER are from the same streams as those used at BFLRF, but the two sets of samples apparently were not collected at the same time. The effect of this difference is considered to be minor.

Overall, the data indicate that diesel fuel produced from these crude oil streams will have a high cetane number. In general, the middle distillates produced by distillation of SPR crude oil can be expected to be stable. Good stability was observed for seven of the eight untreated products. For the one product that exhibited poor stability, the addition of a multifunctional stabilizer additive proved beneficial in that no increase in the formation of deleterious products was observed following additive treatment. Results of fuel storage tests at 80°C were in agreement with the accelerated stability test results obtained by D 2274 and indicated good stability characteristics for the additive-treated products.

Because of operational problems, it was not possible to obtain fuel samples in the quantities originally hoped for and, consequently, it was not possible to perform any full-scale engine evaluations or to upgrade the fuels by hydrotreating.

Nonetheless, the data obtained on the straight-run untreated fuels indicate that transportation fuels conforming to VV-F-800 specifications can be obtained from the SPR crude oil streams. Fuels on the market today which meet VV-F-800 specifications

have most likely undergone some upgrading. Therefore, the SPR crude streams and the fuels refined from them are essentially no different than other refinery feedstocks and unfinished product streams. Integrated U.S. refineries producing such fuels have the capability to perform the upgrading necessary to make these fuels fully conform to the specifications. It is likely that high particulates encountered in this work would be eliminated by crude pretreatment and product finishing.

In summary, DF-1 and DF-2 can be made from SPR crude oils. However, some upgrading (e.g., hydrotreating) will be necessary to ensure that products meet specification requirements for sulfur and corrosion that may not be demanded in a field expedient fuel.

VIII. RECOMMENDATIONS

To more fully evaluate the quality of middle distillate fuels (both diesel and jet) that can be obtained from SPR crude oil streams:

- More distillate should be refined from selected crudes
 - --Additional drums of each crude are available
 - --Operating experience gained from this study will allow more efficient distillation:
- Samples should be upgraded by hydrotreating at a variety of severities,
 especially if jet fuel production is anticipated; and
- Full-scale engine tests should be conducted on both treated and untreated fuels.

IX. LIST OF REFERENCES

- 1. Status of Strategic Petroleum Activities as of 30 September 1985. A report by the United States General Accounting Office GAO/RCED-86-37, 15 October 1985.
- 2. Bowden, J.N. and Stavinoha, L.L., "Final Report on Crude and Product Storage: State-of-the-Art Review and Assessment," Interim Report AFLRL No. 110, AD A066605, U.S. Army Fuels and Lubricants Research Laboratory, San Antonio, TX, Contract No. DAAK70-78-C-0001, November 1978.
- Stavinoha, L.L., Bowden, J.N., Westbrook, S.R., and Giles, H.N., "Final Report on Assessment of Crude Oil and Refined Petroleum Product Quality During Long-Term Storage," Interim Report AFLRL No. 121, AD A082365, U.S. Army Fuels and Lubriants Research Laboratory, San Antonio, TX, Contract Nos. DAAK70-78-C-0001 and DAAK70-80-C-0001, December 1979.
- 4. Eichelberger, J.R., Stavinoha, L.L., and Giles, H.N., "Final Report on Strategic Petroleum Reserve Crude Oil Data Search File Documentation," Interim Report AFLRL No. 107, U.S. Army Fuels and Lubricants Research Laboratory, San Antonio, TX, Contract No. DAAK70-78-C-0001 and IA No. EL-78-A-01-2815, September 1979.
- 5. Frame, E.A., Owens, E.C., and Newman, F.M., "Crude Oil Characterization Data Program," Interim Report AFLRL No. 35, AD A005076, U.S. Army Fuels and Lubricants Research Laboratory, San Antonio, TX, Contract No. DAAK02-73-C-0221, July 1974.
- 6. VV-F-800C; Federal Specification, Fuel Oil, Diesel.
- 7. Federal Register, Vol. 49, No. 14, pp. 2721-2728, Friday, 20 January 1984.
- 8. Sefer, N.R. and Bailey, B.K. "Pilot Plant Preparation of High Freezing Point Navy Jet Fuels," Interim Report AFLRL No. 185, AD B094244L, U.S. Army Fuels and Lubricants Research Laboratory, San Antonio, TX, Contract No. DAAK70-85-C-0007, December 1984.

APPENDIX A

1983 ASSAY DATA FROM THE FEDERAL REGISTER

U. S. DEPARTMENT OF ENERGY STRATEGIC PETROLEUM RESERVE CRUDE OIL ANALYSIS

Data current as of December 1, 1983, but subject to change

STREAM SPR Bryan Hound Sour

TERNDIAL Seaway Terminal, Freeport, Terms

WHOLE CRUDE:

Specific Gravity	0.859		277, pei
API Gravity	33.2 ± 1.0		Meutralization No. <0.15
Salfur, Wt. 1	1.71 ± 0.10	UDP "K" Factor 11.85	Merceptans, ppm 43
Mitrogen, Wt. 2	0.103	Org. Cl. pom TBDs	SUS Viscosity (cSt)
Carbon Residue, W	2 4.74	0.D. Color 13,900	77 °7 51 (7.68)
Pour Point, "T	< 5	R ₂ S,ppm <1.0	100 % 44 (5.51)

DISTILLATION TO 1000°F:

Fraction	1	2	3	4	5	6	7
	G-	175"-	250"-	375*-	220	630-	
Cut Temperature	1757	2507	3757	5307	6507	10007	Residum
Val. X	5.2	8.0	15.8	13.5	13.0	26.1	18.3
		6.7	14.1	12.8	12.9	28.0	41.4
it. 1	4.0	0.7	14.1	12.0	12.7	24.0	21.4
Specific Gosvity	0.656	0.718	0.771	0.818	0.655	0.920	1.003
A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	84.2	65.6	52.0	41.5	34.0	22.3	9.6
AFI Gravity		03.0	<u>.</u>	41.7	_ 	44.3	7.7
Sulfur, W. I	7777774	HAMMA	7777774	0.29	1.01	2.23	3.88
	744444	14144	THIMA	77744444	HIMM	****	****
Merceptane, ppm	20	33	126	36	PRESENTAL .	*****	*******
	THE PARTY.	MANA	******	****	anament's	-	**************************************
Cetane Index	****	****	1444444	49.8	52.4	*******	NAME OF THE PERSON
	*****	PAPPAPA	******	******	PPFPAPA,	pppppppp	****
And Line Point, 7	*****	*****	PRESIDENT.	147.0	136.0	175.5	THILLIAN AND
	********			PAPIHII.	HIPHAN	*******	HHHH
SUR Visc., 7: 77	*******	4888888		- 9	Ä		772247777
130	10000000	33344141	344444	<u> </u>	33	8	*****
180	******	88888888	*****		-33	30	шини
1.80	7411717	77477741	74144	1411441	IMMAI	14144	****
Claud Paint, 7	*****	7/17/47/14	77777777	*****	18	94	****
	*******	*****	****	****	****	******	*****
France Point, "7	*****	****	*****	-31	****	HHMM	*********
	*******	77777777	****	77777741	HFFFFF	*******	AND STREET, SALES
Mitrogan, Wt. I	*****	******	777774744	141144	0.634	0.090	0.399
	1411441	7777774	41111111	*****	411441	MATERIA VI	ममगगम
Carton Residue, W. 2	HHHHH	pappappa	perspech	*******	*****	0.52	22.20

^{*} TO ME DETURNO

BARM D-SPE Crub Of Street Characteristics

U. S. DEPARTMENT OF ENERGY
STRATEGIC PETROLEUM RESERVE
CRUDE OIL ANALYSIS

Data current as of December 1, 1983, but subject to change

STREAM SPR Bryan Mound Sweet

TERMINAL Seavey Terminal, Freeport, Texas

WHOLE CRUDE:

Specific Gravity	0.844		RVP, pei
API Gravity	36.2 4 1.0	•	Meutralization No. <0.14
Sulfur, Vt. I	0.32 ± 0.03	TOP "K" Factor 11.65	Hercaptans, ppm 8.4
Witrogen, Wt. I	0.099	Org. Cl. ppm TBD*	SUB Viscosity (cSt)
Carbon Residue, W	t. % 2.6	0.D. Color 9100	
Pour Point, *7	35	R25,ppm <1.0	100 °F 42 (4.88)

Fraction	1	. 3	3	4.	5	6	7
Out Temperature	25- 175 7 7	175*- 250*7	250°- 375 °7	375°- 537 7	6307	650°- 1000°7	Residen
∀ol. 	6.2	5.8	13.2*	14.8	14.0	25.2	14.3
Ut. X	4,9	7.8	12.4	14.8	14.5	25.8	16.9
Specific Gravity	0.662	0.733	0.789	0.826	0.86	0.908	0.979
API Gramity	82.A	61.5	47.9	39.3	33.4	24.3	13.1
Sulfur, We. X	********		*****	0.05 ********	0.23 	0.45 ########	1.07 <i> </i>
Mercaptana, ppm	7.6 ////////	14 ********	26 744444	14444444 33	*****	HAMMA	*********
Cecume Index	*******	*******	********	45.8 <i>1414444</i>	52.1 <i>0000000</i>	etertete Hertetet	**********
Ard Line Point, 7	*******	THE PERSON	मामामा मामामा	143.0 <i>************************************</i>	167,A	192.6 <i> </i>	tereteret terreteret
SIS Visc., 7: 77	********	11114111 11114111	THIRTH.	×	42	•	Market St.
130 180	binnini binnini	11111111	*****	•	38	130 62	
Cloud Point, T	*******	********	******	HATTHA	30 30	100	
Frome Point, 7	*******	*******	*******	-35.0	the series		HAMING THE
Mitrogen, Wt. X	MINH	********	in in the state of	the thirties	0.008	0.093	0.461 144444444
Carbon Masidas, W. X	*******		77774477	Militaria Militaria		-	16.55

[·] TO EL EXTRACTOR

Data current as of December 1, 1983, but subject to change

STREAM SPR Bryan Hound Maye

TERMINAL Seeway Terminal, Freeport, Texas

WHOLE CRUDE:

Specific Gravity	0.921		RVP, pei 3./
API Gravity	22.1 + 0.5		Meutralisation No. 0.21
Sulfur, Vt. I	3.25 + 0.22	UOP "K" Factor 11.71	Mezcaptane, ppm 53
Mitrogen, Wt. I	0.357	Org. C1, ppm 3.6	5'7 Viscosity (cSt)
Carbon Residue, W	t. % 10.5	0.D. Color 51,200	100 °F 340 (73.4)
Pour Point, '?	<5	H ₂ S,ppm <1.0	. * *F 171 (36.55)

Fraction	I i	2	3		5	6	7
Out Temperature	ය- 175 7	175°- 250° 7	250°- 375°7	375°- 530° 7	530°- 650°?	650°- 1000°7	Residen
Vol. 1	4.7	4,2	10.7	9,7	11.7	22.1	35.8
Ut. X	3,4	3.2	9.0	8.7		22.4	41.1
Specific Gravity	0.665	0.718	0.769	0.823	0.949	0.935	1.057
API Gravity	61.0	65.6	52.5	40.4	31.3	19.A	2.4
Silfur, Hr. 3	737747777 387447777		TO THE PARTY OF	1.11	2.26	3.01	5.12 ************************************
Merciotare, pos	15	303	352	3	*********	111644441	\$########### \$##########
Cetane Index	PPAPPPPP		TAPADALI De DIHI	47.9	48.1 1100	********	77744444444444444444444444444444444444
Andline Point, 7	######### ############################	11477744	1).(4).774.	144.7	152.6	174.2	*********
SUB Visc., 7: 77	72374774	11411441	THININ	¥ 12	42	•	***********
130	*****	1111114	7447474A		372	126	774774744 774774744
	/40000000 00000000	10000000	77777774	******	774643744 26	100	*******
Cloud Point, "F	******	*****	10000000	(444) [1] [4	beeteete	bettetet	*****
Freese Point, 'F	*******	*******	THE PERM	-29.2 	THE PROPERTY OF	38438164	######################################
Strogen, 12. 8	*****	********	******	797997974 79494447	0.021	10.2. 10.2.	Milital
Cerbon Residue, Vt. I	*****	******	*****	****	establish (0.17	25.6

Data current as of December 1, 1983, but subject to change

STREAM SPR West Nackberry Sweet

TREMINAL Sun Terminal, Nederland, Texas

WHOLE CRUDE:

Specific Gravity	0.840		RYP, poi
API Greatty	37.0 ± 0.5		Weutralisation No. 0.14
Sulfur, Wt. 2	0.34 ± 0.05	DP "K" Factor 11.90	Merceptans, ppm 7,4
Witrogen, Wt. I	0.105	Org. Cl. ppm TBD*	SUS Viscosity (cSt)
Carbon Residue,	ft. 2 2.19	0.D. Color	77 °7 43 (5.82)
Pour Point, 'T	25	M25,ppm <1.0	100 °F 39 (3.94)

Fraction		2	3	٨	-5	6	7
Press (or	Ġ	175*-	250*-	375%	530*-	6500-	
Out Temperature	1757	25077	3757	530*7	6507	10007	Residum
			•				
Val. X	6.9	7.2	14.6	13.2	17.0	23.5	11.5
						25,9	13.7
W. X	5,5	8.1	13.5	15.3	17.7	20.7	D./
	A 7/3	0,733	0.779	0,829	0.859	0.913	0.985
Specific Gravity	0.663	0,/33	0.779	V. 02.7	0,0,7	0,723	0.70
	62.1	61.5	50.2	39.1	33.3	23.5	12.2
API Grevity	- ex.1	01.3		2714	2,,,		
Sulfur, W. X	7747444	141144	144714	0.09	0.25	0.45	1.13
SILTUR, W. A	30300000	****	****	14141441	14444	****	***
Hercapture, pon	15	32	92	25	77477777	****	*****
rercapcare, par	minun	141414	1411441	114411	******	****	****
Cetane Index	******	*****	*****	45.6	31.3	*****	****
	114:44	*****	142,444	777777777	******	papapapa	******
And line Point, 7	****	4444	****	146.9	167.1	192.2	*******
	****	44441	144441	774444	HHAM	200000A	HHHHHH
SUB Visco: 7: 77	****	HHHH	1111111	3	•	•	HARMAN
100	****	****		Ŋ	43	•	******
130	*******	11411441	PARTAN.	•	38 '	117	11144144
180	****	44,444,44	***	•	- 1	38	than the
	******	****	1111414	******	***	*****	*********
Class Paint, 7	the Heat	HHIM	****	144 144 144	3A 74777444	115	77777777
	00000000	10000000	11111111	16444444	23447444	77K7K7K4	141414
France Police, 7	******	111144	M MATTER	-31.3	*****	1412144	131177414
	Statistics.		********	1 , , , , , , , , ,	0.010	0.109	0,548
Mercyan, St. 1	PARTICIAL IN	****	38443944	*****	7747444	77744777	1414144
	744444		33335433		F########		16.27
Carton Residue, Vt. 1	********	recesses		PETELFER	FITTITI	1	

[·] TO IN CENTRAL CO

Data current as of December 1, 1983, but subject to change

STREAM SPR West Rackberry Sour

TERMINAL Sun Terminal, Nederland, Texas

WHOLE CRUDE:

Specific Gravit	v <u>0.860</u>		RVP, pci 5.3 max.
API Grevity	33.1 \$ 1.0		Meutralisation No. <0.12
Sulfur, Ve. I	1.71 ± 0.10	TOP "%" Factor 12.02	Mercaptans, ppm 19
Mitrogen, Wt. \$	0.105	Org. Cl, ppm TBD*	SUS Viscosity (cSt)
Carbon Residue,	Wt. 1 4.04	O.D. Color TBD	77 °P 59 (10.05)
Pour Point, "Y	<30	H25,ppm <1.0	100 °F 53 (A.28)

Fraction		2	3_	-		- 5	7
Out Temperature	C5- 175 7	175°- 250°7	250°- 375 7 7	375°- 530°7	530°- 650°7	650*-	Residem
Val. 1	5.6	7.6	16.2	14.3	12.9	34.1	17.7
We. I	4.4	6.5	16.8	13.9	13.1	26.3	21.0
Specific Gravity	0.661	0.721	0.7.3	0.822	0.863	0.924	1.011
API Gravity	82.6	64.8	31.6	40.7	22.5	21.6	. 2.5
13.5 0.0.3.67							
Sulfur, Vt. X	23 32 FF FF	*********	TATE LAKE	0.36	1.12	2.26	3.84
	*****	77777474	*******	7 8 8 8 8 8 8 8 7		########	**********
Mercaptane, pue	20	45	- 83	65	384365365	*******	THURSTALL
	7077475		MATHEMA	14/14/14	*******	******	*******
Cetare Index	*******	8 . 000 AAAA	75 444 6 5 24	48.3	\$0.0	AAAAAAAAA	30000000000
	******	MINISTE	88888823A	minu	77777788	714771471	********
Ardline Point, 7	******	mman	77777777	143.2	137.6	180.0	THEFTERDAR
AGENT TOUR,	MANAGE	*********	MININ	minn	14804544	m.m	********
SUB Visc. 7: 77	*****	534555A	13111111	34	-		44444444
100	24442222	111111111	THE SECTION SECTION	\tilde{n}	- 12		*********
130	*******	*****	MATRICE		37.	124	14141414
180	84888888A	171112711	77777434			- 60	MARKET. 3
130	30033441	74414174	171117111	MININI.	HILLIA	THANH	******
Clark Paint, 7	740022222	74414271	77774444	11111111	21	8	******
	340000014	700 A 44 A 4 A	THEREIS	77494444	Minne	Himme	777. AZZZAZA
France Police, '7	12112112	7000040	THATTA	-22.4	MANAGE	70000	*******
	*******	77/7/2014	77774777	14444	744744	4444444	-
Mitroum, Wt. I	*******		744777774	*****	0.015	0.104	0.362
	********	מתונונד	77777777	****	1444444	*****	****
Carbon Mesidue, Wt. X	*****	77747474	*******	*******	****	73.0	20.29

[·] TO ME DETERMINED

Data current as of December 1, 1983, but subject to change

STREAM SPR Bayou Choctaw Sweet

TERMINAL SPR St. James Terminal, St. James, Lousiana

WHOLE CRUDE:

Specific Gravity	0.844		RYP, pei5.6
API Gravity	36.2 ± 1.0	·	Westralisation No. 0.09
Sulfur, Wt. I	0.35 ± 0.05	TOP "K" Factor 12.19	Mercaptans, ppm 27
Mitrogen, Wt. I	0.098	Org. Cl. spm TBD*	SUB Viscosity (cSt)
Carbon Residue, V	t. % 2.8	O.D. Color TBD	77 °F 55 (8.91)
Pour Point, 'T	35	H25,ppm <1	100 7 49 (7.06)

Praction	1	2	3	A	5	6	7
resolut	6	175'-	250*-	375%	300-	640-	
Out Temperature	1757	2507	3757	5317	650*7	10007	Residam
Vol. X	5.6	9.0	13.6	13.5	14.1	24.6	16.7
W. 1	4.8	8.0	12.8	13.3	14.5	27.0	12.6
Specific Gravity	0.661	0.734	0.781	0.825	0.851	0.903	0.976
API Gravity	82.5	61.4	49.8	40.0	34.8	25.2	13.5
Sulfur, Ht. I	*****	PROPERTY.	****	0.08	0.22	0.46	1.05
	*****	****	****	*****	****	***	*******
Mercaptans, ppm	14.5	22	\$	S3	****	****	***
	*****	****	****	abbeiret.	*****	LEBENSELL	VALUE SALES
Cetare Index	*****	ppetrici.	PARTERIA.	47.1	53.7	*******	HANDING
	****	****	*******	****	<u>beathering</u>	becomment	<u> </u>
Antline Point, 7	bee been	******	HPPPPP,	146.5	167.5	190.3	HIPPIP
	*****	Hitriti	PRESENTAL.	PROPERTY.	******	hinisten	
SIB VISC. 7: 77	*****	****	PAPPAP	Ų	•	•	HAMMA
100	EXPERIENCE	estables	Librate	39	41	•	Market
130	et evetet	tetatritis (heriters.	•	37	102	thirt in the
180	******	estatet.	744444	•	•'	55	****
	пини	*****	HIMIM	HIMMI	ebentata (******	HAMILIA
Class Point, 7	*****	******	****	******	26	99	******
	******	*****	****	PAPAPAPA	*****	****	***
Presse Point, "7	*******	******	****	-35	******	****	APREADATES.
10015	*****	*******	*****	79147447	-	**	THE PERSON NAMED IN
Microgan, W. X	PRPSP PR	*****	****	****	0.006	0.091	0.492
	*****	*****	*****		HAMMA	*****	HHIMMA
Carbon Residue, Wt. X	******	****	*****	-	haldidah.	•	15.2

^{*} TO EL DETERMINED

Data current as of December 1, 1983, but subject to change

STREAM SPR Bayou Choctaw Sout

TERMINAL SPR St. James Terminal, St. James, Lousiana

WHOLE CRUDE:

Specific Gravity0.871		RYP, psi 5.30 max.
API Gravity 31.0 ± 1.0		Meutralisation No. (0.12
Sulfur, Wt. 2 1.76 ± 0.10	WP "K" Factor 11.84	Mercaptans, pps 18
Mitrogen, Wt. 2 0.138	Org. Cl, ppm TBD*	SUB Viscosity (eSt)
Carbon Residue, Wt. Z 4.50	O.D. Color TBD	<u>77 °7 67 (12.28)</u>
Pour Point, T	H ₂ S,ppm <1.0	100 °F 52 (8.10)

DISTILLATION TO 1000°F:

Fraction	1	2	3	4	5	6	7
	6	175'-	250*-	375'-	530"-	650"-	
Out Temperature	1757	2507	375*7	5307	6507	10007	Residen
			•		•		
Vol. I	6.0	6.9	15.8	15.4	12.2	24.9	17.7
ue. I	4.6	5.8	14.3	14.9	12.4	27.0	20.9
Specific Gravity	0.66%	0.724	0.773	0.824	0.867	0.929	1.017
API Gravity	61.5	63.9	51.5	40.3	31.7	20.9	7.7
	700000	8882838X	3777477	- A //	1 44	3 10	
Sulfur, Wt. I	********	11111111	**********	0.44	1.26	2.19	3.85
		******	********		*******	********	***************************************
Merceptane, pps	CET	TBD	TND	TBD	114000466	44444444	1000000000
	********	4244444	*********	47.6	48.8	24434444	**********
Cetane Index	********	33333333	2222222	77317777	1144414	*****	*********
Andline Point, "7	*****	3,121,131	1111111	730	1340	TBD	********
ARRITHE POLICE, P	73113411	7477744	111111111	111111111	77044744	20000000	********
SIE Viec. 7: 77	44444444	*****	77777474	34	•	•	*****
100	*****	*****	70770774	3	43:	-	HHHHH
130	******	*******	7/17/7/7/7/	•	384	727	*********
180	****	*****	77744444	•	-	63	*****
	PPPPPPPPP	****	****	PARAMAPA	****	******	********
Cloud Point, 7	pppppppp	7000000	*****	7777777	2.4	85	SANSARANA
	*****	*****	*****	*****	*****	ppppppppp	*****
Freeze Paint, "7	******	PPPPPPPP	****	TRD	****	********	Libralanies
	******	**********	*******			h in this is to be a	
Mitrogan, W	White States				0.025	0.133	0.478
	A PROPERTY OF THE				SPECIAL PROPERTY.		A STATE OF THE PARTY OF THE PAR

[·] PO E EXTROPO

างเครื่องครั้งเครื่องครั้งเครื่องครั้งเครื่องครั้งเครื่องครั้งเครื่องครั้งเครื่องครั้งเครื่องครั้งเครื่องครั้งใ

Data current as of December 1, 1983, but subject to change

STREAM SPR Weeks Island Sout

TERMINAL SPR St. James Terminal, St. James, Louisiana

WHOLE CRUDE:

Specific Gravity	0.878
API Gravity	29.7° ± 0.5°
Sulfur, Vt. T	1.39 ± 0.10
Mitrogen, Wt. 2	0.173
Carbon Residue, W	e. 2 5.17
Pour Point. '7	(5

OF "R" Factor 11.78
Org. C1, ppm <1
0.D. Color 28,840
H25,ppm <1.0

DISTILLATION TO 1000°F:

rection	T i	2	3	4	5	6	7
/ (GCL)(GI	1 3	175'-	250'-	375"-	220	60	
Sa Sumainsum	1757	2507	3757	5307	6507	10007	Residum
he Temperature	+-**-		-				
/ol. X	4.3	6.6	12.5	12.6	15.8	25.4	21.7
94. 4	+						
k. I	3.3	3.3	11.2	12.0	15.8	27.0	23.3
-C. A						,	
Specific Gravity	0.659	0.729	0.778	0.829	0.868	0.927	1.014
Speciale Otherity							
API Gravity	8.1	62.7	50.5	39.3	31.5	21.2	8.0
PI GENILY							
Sulfur, Wt. I	*****	****	****	0.31	1.02	1.70	3.14
autus, w	72434444	*****	*****	*******	******	beening	****
Merceptane, ppe	18	73	50	8.1	pppppppp	*****	*****
rercentary pre	minne	7227257	77744774	******	********	*********	****
Cetare Index	******	77777777	******	45.9	46.5	****	*****
CACRE DISEX	******	*****	34454444	****	****	7444747	14444
Andline Point, 7	******	77777777	7277744	141.6	156.1	173.1	11111111
ARLITIN FOLIK, F	******	******	******	171717171	PARTE IN	***	PARAMAN N
SUB Place, 7: 77	******	BAAAAAA	32222777	34	-	6	PARAMAKA.
508 Plac., 7: 77	*****	10001100	*****	9	44:	-	14111111
130	- 20000000	77777777	*******	-	38	BI	*****
180	******	*****	11111111	-	•	61	TRAMATA
197		*****	77777777	****	*****	1411414	*****
Cloud Point, 7	*****	-	*****	*****	29	105	*****
CHANGE TO THE PARTY OF THE PART	1	****	*****	*****	*****	****	PHHAPH
	******				******	78387747	77774774
France Point, 7	*******	######################################				PPFFFFF	HAMA
	2222222	7444477	111111111	7777774	1 222		0.541
Microson, W. I	******		*******	******	* ******	77744777	77714774
Carton Residue, Wt.				*******	141414	0.18	20.65

APPENDIX B
1986 CRUDE ASSAY DATA

CRUDE OIL ANALYSIS

Terminal DOE St. James Terminal, St. James, LA Stream SPR Bayou Choctaw Sour

		,			Crude			
Specific Gravity API Gravity		0.85		, ppm	8:0(7.5)* 27.7(27.6)		@ 100° F _ 5.8	
API GRAND	′			•,,,,-				
Selfer, Wt %		1.41	Fe	, ppm ^{Not l}	etectable (1.	. ³⁾ "H ₂ S, ppm (c)*	
Nitrogen, W	£ %	0.14	6Or	g. Cl, ppm	(c)• 0.4 Mercaptane, ppm (c)• 4.2		<u> </u>	
		(-) 3.64		D. Color	15,900		77 F 8.38 es	
Con. Car. Re	s., WL 76	(c)				-		
Pour Point,	Ţ	5	U	OP "K"	11.90	. 10	00° F _ 5.88 _ cs	t SUS
Fraction			2	3	4	8		7
Cut Temp.	હંહ	C5 · 175° F	175° - 250° F	250° · 375° F	375° · 530° F	530° · 650° F	650°. 1055°P	Residuem
Vol mia	80.5		329.3	585.5	731.4	535.9	1311.8	611.0
Vol. %	4.0	4.1	7.4	13.1	16.4	12.0	29.4	13.7
Vol. Sum %	14.0	8.1	15.5	28.6	45.0	57.0	86.4	100.1
Wt. grams	108.3		238.9	451.5	598.6	461.0	1213.4	626.9
Wt S	2.8	3.3	6.2	11.8	15.6	12.0	31.7	16.4
Specific Gravit		0.6761	0.7255	0.7712	0.8184	0.8603	0.9250	1.026
API Gravity	7 7 7	77.8	63.5	52.0	41.4	33.0	21.5	8.2
Suifur, Wt. %		0.010	0.010	0.039	0.32	1.01	2.10	3.57
Mercaptane, pr	om i	<1	50.3	<1	7.1			
H ₂ S. ppm		31.3	3.8	32.4	<1			
Organic Cl. pp		1.7	1.7	2.1			4 7	
Aniline Point				125.8	144.3	160.5	179.4	
Neutralization	No.				0.04	0.07		
Cetane Index		1			49.62	50.79		
Naphthalenes.	vol. %				4.06	11.37		'
Smoke point			1		19.1	14.0		
Nitrogen, Wt.	3				0.0006	0.013	0.154	0.582
Viscosity:								
ಚಿಕ (SUS)					2.25(33.5)			
	00° F		l		1.79 (<32.0)			
1	30° F					3.32(37.1)	29.45(139.4)	,
1	80° F						11.30(63.7)	
	10° F							2864(13359)
	50° F	<u></u>		L			<u> </u>	665.9(3113)
Freezing Point				<u> </u>	-31.9			<u> </u>
Cloud Point,						22	106	
Pour Point, T		<u> </u>		ļ	<u> </u>	20	90	
Ni ppm						·	ot Detectable	
V, pom				ļ	1		ot Detectable	l
Fe, ppm			<u> </u>	L			ot Detectable	
Con. Car. Res	., Wt %	1	1	ł	1		·	22.2

Data current as of September 19, 1986, but subject to change. •(c), calculated from fraction results.

C₅-175⁰F

Whole crude lead content: 0.022 ppm.

Research Octane Number: Motor Octane Number:

63.5 59.4

44.6 42.5

SPR BAYOU CHOCTAW SOUR

		-	Distillate fraction	ns. ASTM D 2892	
		Cg-175° F Val. %	175-250° F Vol. %	250-375° F Vol. %	375-420° F Vol. %
Total Par	raffins	46.0	33.4	TBD+	TBD
Total lao	-peratfins	40.3	33.5		100
Total Arc		2.5	7.6		1
Total Na		12.2	25.5		ſ
Total Old		0.0	0.0		
Total Uni		0.0	0.0	ł	
Bandani			1		
Parattine:	CI	0.0	0.0		
	æ	0.0	0.0	}	
	8	0.0	0.0		
	CA	0.4	0.0		
	CS CS	15.0	0.4		
	C4	23.6	5.6		
	C7	1.0	19.4		•
	CI)	0.0	7.9		'
	CI	0.0	0.0		1
	C10	0.0	0.0		
	C11	0.0	0.0		
	C12	0.0	0.0		
lso-peratfins	· CA	0.0	0.0		
sec. her ann a	i čs	5.7	0.0		
	G.	29.8	2.7		
	C7	4.8			
	ä	0.0	16.0		
	38		13.7		
		0.0	3.1		
	C10	0.0	0.0		
	C11	0.0	0.0		
Aromatics:	C8	2.0	0.7		
	C7	0.5	5.5		
	Ca	0.0	1.4		
	Ca	0.0	0.0		
	C10	0.0	0.0		
	C11	0.0	0.0		
	C12	0.0	0.0		
Naphthenes	. Cs	2.0	0.1		
	. ce	9.0	4.8	1	
	C7	1.2	13.4		
	CS	0.0	7.1		
	G G	0.0	0.0	1	
	C10	0.0	0.0		
	C11	0.0	0.0	1	
4	C12	0.0	0.0	ł	
	J.2	0.0	0.0	,]	
Olefine:	C4	0.0	0.0		
	CS	0.0	0.0		
	ČS	0.0	0.0	J	
	C7	0.0	0.0	<u> </u>	
	Ca I	00	00 1	1	

Debutanization Fraction						
Component Vol. %						
Methane	45					
Ethene'	0.1					
Propene	10.8					
i-Butane	7.7					
n-Butane	31.5					
I-Pentane	19.8					
n-Pentane	24.2					
Co+	5.9					

Whole Crude B-T-X

Component	<u>Vol.%</u>
Benzene	0.134
Toluene	0.428
Ethylbenzene	0.037
Xylenes	0.064

^{*}The gas chromatographic PIANO method used provides for elution and identification of components up to a nominal n-C₁₂ (420° F) [†]To be determined.

CRUDE OIL ANALYSIS

Stream SPR Bayou Choctaw Sweet Terminal DOE St. James Terminal, St. James, LA

					Crude			
Specific Grav	rity	0.84	0.8424 Ni. ppm 4.4(4.4)*		ERVP, peis	ERVP, peis @ 100° F _ 8.10		
API Gravity		36.5	v.	ppm	7.0(7.4)*	Neutralizat	ion No	2
Salfar, Wt. 9		0.40		, ppm	2.1(3.3)*	H ₂ S, ppm ((c)*	
		0.12			(c)• 0.4	2-,		
Nitrogen, Wt						•	, ppm (c)* 3.8	
Con. Car. Res	L, WL 5	(c)* <u>2.53</u>	0.	D. Color	14,000	. Viscosity:	77° F <u>6.86</u> es	t <u>48.2</u> Su
Pour Point,	Ŧ	_30	U	OP "K"	12.05	. 1	00° F _4.90 cs	42.1 SU
Fraction		1	3	3	4	6		7
Cut Temp.	ઉડ	C5 · 175° F	175° - 250° F	250° · 375° F	375° - 530° F	530° - 650° P	450° - 1051 ° F	Residuam
Vol. · mis	259.0	236.7	403.7	600.9	755.8	565.4	1456.9	570.0
Vol. %	5.3	4.9	8.3	12.4	15.6	11.7	30.1	11.8
Vol. Sum %	5.3	10.2	18.5	30.9	46.5	58.2	88.3	100.1
Wt . grame	155.4	161.6	298.0	466.2	622.4	482.2	1322.0	568.9
We &	3.8	4.0	7.3	11.4	15.3	11.8	32.4	13.9
Specific Gravity	0.6	0.6826	0.7382	0.7759	0.8235	0.8528	0.9074	0.998
API Gravity		75.8	60.2	. 50.9	40.3	34.4	24.4	10.3
Suifur, WL S		0.004	0.002	0.011	0.06	0.26	0.54	1.26
Mercaptane, ppi		8.0	<1	<1	23.0			
H ₂ S. ppm		<1	6.3	15.4	<1			
Organic Cl. pps		2.9	1.8	1.3				
Aniline Point,				126.0	144.8	167.3	195.4	
Neutralization !	Va.				0.04	0.08		
Cetane Index				<u> </u>	47.62	53.05		
Naphthalenes,	rol. 🤏				4.40	9.12		
Smeke point					18.6	16.6		
Nitrogen, Wt. 9					0.0003	0.006	0.136	0.635
Viscosity:				<u> </u>				
	7 .				2.33(33.7)		<u> </u>	
	0° P			<u> </u>	1,85(32.1)	4.89(42.0)	1 44 44 144	
	0° P			ļ		3.33(37.1)	25.93(123.6)	
	0° P			ļ			10.42(60.6)	
	OF P				ļ		<u> </u>	1227.9(5:27
	0.5				<u> </u>		ļ	326.4 (1525
Freezing Point,					-31.9	-38	ļ	
Coud Point T			ļ	ļ		28 25	114	
Pour Point T				 		43	100	<u> </u>
Ni. ppm							not Detectable	
V, ppm				 			ot Detectable	
Fe. ppm	7774 -			<u> </u>			Sot Detectable	
Con. Car. Res.,	WE	١.	1	P.	1	1	1	18.2

Data current as of September 19, 1986, but subject to change.

Whole crude lead content: 0.006 ppm. Research Octane Number: $\frac{C_5-175}{68.4}$ $\frac{C_5-375}{51.7}$

Motor Octane Number: 64.1 48.2

SPR BAYOU CHOCTAW SWEET

		* ·	31 K 3K	TOO CHUCTA	JMEE!
4		•	Distillate fraction	ns, ASTM D 2892	
		Cg-175° F Vol. %	175-250° F Vol. %	250-375° F Vol. %	375-420° F Vol. %
* Total Par Total Sec Total Are Total Ole Total Uni	-pereffine ometics phthenes iffne	41.6 36.4 3.1 18.9 0.0 0.0	25.4 24.7 7.7 42.0 0.0	тво⁺	TBO .
Parattine:	58388888	0.0 0.0 0.0 1.2 17.3 22.4 0.7 0.0	0.1 0.0 0.0 0.0 0.0 0.3 4.1 14.6 6.4 0.0		
	C10 C11 C12	0.C 0.Q 0.O	0.0 0.0 0.0		•
feo-pereffine	C4 C5 C7 C3 C7 C3 C10 C11	0.1 8.1 24.5 3.6 0.0 0.0 0.0	0.0 0.1 2.0 12.2 9.4 0.9 0.0		
Arometics:	C8 C7 C8 C9 C10 C11 C12	2.6 0.6 0.0 0.0 0.0 0.0	0.9 5.6 1.2 0.0 0.0 0.0 0.0		
Naphthenes	CS C8 C7 C8 C9 C10 C11 C12	2.7 14.2 2.0 0.0 0.0 0.0 0.0	0.2 8.3 23.0 10.5 0.1 0.0 0.0	·	
Olefins:	3 3 3 7 3	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0		

Debutanization Fraction						
Component Vol. %						
Methane	-					
Ethene	0.0					
Propene	11,6.					
i-Butane	8.8					
n-Butane	36.5					
HPentane	18.1					
n-Pentane	20.3					
Co	4.6					

MUO.	e	Crude	8-T-X
		خاصون	

Component	<u>Vol.%</u>
Benzene	0.202
Toluene	0.494
Ethylbenzene	0.033
Xylenes	0.064

^{*}The gas chromatographic PIANO method used provides for elution and identification of components up to a nominal n=C₁₂(420° F) *To be determined.

CRUDE OIL ANALYSIS

Stream SPR Bryan Mound Maya Terminal Phillips Terminal, Freeport, TX

					Crude			
Specific Gravity 0.9166 API Gravity 22.9 Sulfur, Wt. % 3.13 Nitrogen, Wt. % 0.356 Con. Car. Res., Wt. % (c)* 11.19		22.9 V, ppm 263 (263)* 3.13 Fe, ppm 2.9 (0.9)* 0.356 Org. Cl, ppm (e)* 0.11.19 O.D. Coior 69.450				Neutralization No. 0.22 H ₂ S, ppm (c)* 1.1 Mercaptans, ppm (c)* 17.7 Viscosity: 77° F 128.11 cSt 593 SU		
Pour Point,	,			OP "K"	11.75	10	00° F 5178_ cs	t48/_ SUS
Fraction		1	2	3	•			7
Cut Temp.	ઉંડ	C5 · 175° F	175° - 250° F	250° - 375° F	375° - 530° F	530° - 650° P	650°-	Residuum
Vol. · mie	71.0	140.3	220.2	421.6	473.8	404.2	1104.7	1317.2
Vol. 5	1 7	3.4	5.3	10.2	11.4	9.7	26.6	31.7
Vol. Sum %	1.7	5.1	10.4	20.6	32.0	41.7	68.3	100.0
Wt. grams	42.6	94.8	159.9	325.4	390.9	351.4	1034.7	1405.5
We S	1 1	2.5	4.2	8.5	10.3	9.2	27.2	36.9
Specific Gravity	0.61	0.6755	0.7263	0.7719	0.8251	0.8693	0.9366	1.067
API Gravity	- 4. 4	78.0	63.3	51.8	40.0	31.3	19.6	1.1
Sulfur, We W		0.010	0.018	0.291	0.95	2.00	2.97	5.52
Mercaptane, ppe		82.0	113.6	127.6	<1			
H ₂ S. ppm	- #	2.9	2.4	5.3	5.0		 	
Organic Cl. ppm		1.8	1.9	1.8				
Andine Point.		- 1 V		128.7	141.7	151.9	163.4	
Neutralization N			,	1000	0.03	0.06		
Cetane Index	- 1				47.09	48.14		
Naphthalenes, v	ol. %				4.16	10.98		
Smoke point					16.0	13.3		
Nitrogen, WL S	il i			 	0.0016	0.030	0,232	0.786
Viscosity:	- 11							W
	FF				2.33(33.7)			
	7 7				1.86(32.1)	4.92(42.1)		
	7 F					3.32(37.1)	33.89(159.3)	
	77	74		<u> </u>			12.23(67.1)	
	7 7			 				495874(2.31x
	99			 				42772 (19995.
Freezing Point.	فاحد حسنت				-31.9			
Cloud Point, T						24	106	
Pour Point T						20	90	
Ni, ppm			t	1			ot Detectable	169
V. ppm							ot Detectable	711
Fe. ppm	- 1			 			ot Detectable	

Data current as of September 19, 1986, but subject to change.

*(c), exiculated from fraction results.

C₅-175°F C₅-375°F

Whole crude lead content: 0.008 ppm.

Research Octane Number: Motor Octane Number: 64.4 41.5 60.7 41.3

SPR BRYAN MOUND MAYA

		<u> </u>	Distillate fraction	N. ASTM D 2892	
,		Cg-175° F Vol. %	175-250° F Vol. %	250-375° F Vol. %	375-420° F Vol. %
* Total Par	raffins	44.0	33.5	TBD ⁺	TBD
Total leo		37.2	31.3	[}
Total Arc		3.1	7.6	ł	ł
Total Na		11.7	27.0		
Total Ok		0.0	0.0		,
Total Uni	LINOWINE	0.0	0.0		l
Paraffins:	C1	0.0	0.0	ſ	
	æ	0.0	0.0	İ	ĺ
	88	0.1	0.0	ļ	
•	C4	1.1	0.0		
	CS i	20.2	0.7		
	(3)	25.4	4.5		
	C7	1.3	19.0	'	
	CI	0.0	9.1		
	C#	0.0	0.1		
	C10	0.0	0.0		,
	C11	0.0 0.0	0.0		
	C12	.	0.0		
leo-peraffina	r CA	0.2	,0.0		
see pereima	ČS	8.5	0.3	·	<i>'</i> .
-	Či	24.0	2.5		·
	C7	4.5	14.2		· ·
	C8	0.0	13.5		
	C9	0.0	1.4		
	C10	0.0	0.0		}
	C11	0.0	0.0	{	
Aroma.ira:	C8	2.0	0.8]
	C7	1.1	5.2		
	CB.	0.0	1.6	1	
	C9	0.0	0.0		
	C10	0.0	0.0		
	C11	0.0	0.0		
	C12	0.0	0.0		
Naphthenes		2.0	0.2		
ASSULTANCE	. ⊘s	8.4	4.3		
	C7	1.4	13.1	}	·
	Č	0.0	9.4		
	C9	0.0	0.0		
	C10	0.0	0.0		}
	C11	0.0	0.0	}	
	C12	0.0	0.0]	
Olefins:	C4	0.0	0.0		1
	ខន	0.0	0.0		
	38	0.0	0.0		
	35	0.0	0.0	j]
	Či	0.0	0.0]

Debutanization Fraction	
Component	Vol. %
Metherie	_
Ethene	0.1
Propene	13.0
i-Butane	8.9
n-Butane ·	40.8
i-Pentane	15.0
n-Pentane	16.6
Cer	, 5.6

Whole Crude B-T-X

Component	Vo1.5
Benzene	0.110
Toluene	0.313
Ethylbenzene	0.029
Xylenes	0.057

^{*}The gas chromatographic PIANO method used provides for elution and identification of components up to a nominal n-C₁₂ (420° F)

To be determined.

CRUDE OIL ANALYSIS

Stream SPR Bryan Mound Sour Terminal Phillips Terminal, Frcaport, TX

			Crude		
Specific Gravity	0.8683	Ni, ppm		ERVP, peia @ 100° F	•
API Gravity Sulfur, Wt. %	1.60	V, ppm Fe, ppm	50.9(60.6)* Not Detectable		0.08
Nitrogen, Wt. %	0.149	Org. Cl. ppm	(c)* 1.1	Mercaptans, ppm (c)*	12.1
Con. Car. Res., Wt. % (Pour Point, *F	c)*_4.81	O.D. Color UOP "K"	25,540	Viscosity: 77° F 11.4 100° F 7.44	cSt63.7 SUS cSt50.2 SUS

Fraction		11	2	3	4	5		7
Cut Temp.	હેઉ	CS - 175° F	175° · 250° F	250° · 375° F	375° - 530° F	830° 680° F	1061 • p	Residenza
Vol male	23.8	133.6	271.6	522.8	634.3	459.2	1160.7	597.4
Vol. 🦠	0.6	3.5	7.0	13.6	16.5	11.9	30.1	15.5
Vol. Sum %	0.6	4.4	11.1	24.7	41.2	53.1	83.2	98.7
Wt grams	14.3	90.1	197.0	403.6	518.8	395.1	1074.0	618.9
WL S	0.4	2.7	5.9	12.1	15.3	11.8	32.1	18.5
Specific Gravity	0.6	0.6743	0.7254	0.7720	0.8179	0.8605	0.9253	1.036
API Gravity		78.4	63.6	51.8	41.5	32.9	21.4	5.1
Suifur. Wt. %		0.002	0.005	0.046	0.42	1.14	2.08	3.68
Mercaptana, ppo		24.4	41.3	74.2	<1		I .	T
H ₂ S. ppm		2.1	2.3	5.4	10.9			
Organic Cl. ppu		1.6	4.7	6.2	,			
Antine Point,				126.7	144.9	160.4	178.9	
Neutralization N	io.				0.62	0.01		
Cetane Index					49.81	50.63	1	
Naphthalenes, v	ol. %				3.95	11.02		<u> </u>
Smoke point					16.6	14,2		
Nitrogen, Wt. %					0.0009	0.017	0.166	0.095
Viscosity:						,		
	P				2.26(33.4)			
100	7 5				1.79 (<32.0)	4.80(41.8)		
130	7 7					3.20(37.0)	29.30(138.7)	
180	FF			,			11.05(62.9)	
210	7 7						I	9002(41,983
250	PP							1737(8120)
Freezing Point	7				-31.0	1		i i
Cloud Point, T						24	112	
Pour Point, T						20	95	2.5
Ni, ppm				,			ot Detectable	83.3
V. руша							ot Detectable	
Fe. ppm							ot Detectable	Not Deteit
Con. Car. Res.,	WL %					,		76 .

*(c), calculated from fraction results.	er 13, 1300 but	subject to change.	C5-175 ⁰ F	C5-3750e
Whole crude lead content:	0.002 ppm.	Research Octane Number: Motor Octane Number:	64.6 60.7	41.3

SPR BRYAN MOUND SOUR

		Distillate fraction	na, ASTM D 2892	<u> </u>
	Cg-175° F Vol. %	175-250° F Vol. %	250-375° F Vol. %	375-420° F Vol. %
* Total Parattine Total Sco-paratti Total Arometics Total Naphthen Total Olefine	46.9 38.4 2.7	34.3 31.6 7.9 28.2 0.0	TBC	TBD
Total Unknown	0.0	0.0 0.0		i
8888	0.0 0.3 17.2 28.9	0.0 0.0 0.4 5.8		
67 CB CB C10 C11	1.4 0.0 0.0 0.0 0.0	19.5 8.8 0.0 0.0		
C12 leo-paraffine: C4 C5	0.0 0.0 6.7	0.0 0.0 0.2 2.6		
CS C7 CS C9 C10 C11	27.6 5.1 0.0 0.0 0.0	15.2 13.3 0.4 0.0		
Arometics: C3 C7 C8 C9 C10		0.8 5.6 1.5 0.0 0.0		
C12 Naphthenes: C5 C8 C7	2.0 8.5 1.5	0.0 0.1 4.8 13.2		
C8 C9 C10 C11 C12	0.0	8.1 0.0 0.0 0.0 0.0		
Olefine: C4 C5 C3 C7 C7	0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0		

Debutanization Fraction			
Component	Val. %		
Methane	• '		
Etherre	0.0		
Properte	6.8		
HButane	7.8		
n-Butane	32.7		
I-Pentane	22.6		
n-Pentane	24.0		
Cr	6.0		

Who '	le	Crud	ie	В-	·T-	X

Component	<u>vol. 3</u>
Benzene	0.123
Toluene	0.420
Ethylbenzene	0.035
Xylenes	0.071

^{*}The gas chromatographic PIANO method used provides for elution and identification of components up to a nominal n-C₁₂ (420° F)

⁺To be determined.

CRUDE OIL ANALYSIS

Stream SPR Bryan Mound Sweet Terminal Phillips Terminal, Freeport, TX

Crude					
Specific Gravity	0.8449 36.0	Ni. ppm	5.1(5.3)* 2.4(3.2)*	ERVP, peia @ 100° F 5.60 Neutralization No. 0.06	
API Gravity Sulfur, WL %	0.32	V, ppm. Fe, ppm	4.3(4.1)*	H ₂ S, ppm (c)* 8.4	
Nitrogen, Wt. % Con. Car. Res., Wt. % (0.122	Org. Cl. ppm O.D. Color	(c)• 0.7 11,450	Mercaptans, ppm (c)* 0.4 Viscosity: 77° F 7.93 eSt 51.7 SUS	
Pour Point, T	40	UOP "K"	12.00	100° F 4.89 eSt 42.0 SUS	

Fraction		1	3	3 .	4	5	6	7
Cut Temp.	G:	C5 · 175° F	175° - 260° F	250° · 375° F	375° - 530° F	530° - 650° P	1035 • p	Residuum
Vol mis l	06.2	159.2	291.0	452.7	586.6	455.5	1020.1	416.2
Vol. %	3.0	4.6	8.3	13.0	16.8	13.0	29.2	11.9
Vol. Sum %	3.0	7.6	15.9	28.9	45.7	58.7	87.9	99.8
	63.7	108.8	214.2	350.9	484.0	389.0	927.4	412.0
We &	2.2	3.7	7.3	11.9	16.4	13.2	31.4	14.0
Specific Gravity	0.6	J. 6835	. 0.7362	0.7752	0.8251	0.8540	0.9091	0.990
API Gravity	i i	75.5	60.7	51.0	40.0	34.2	24.1	11.4
Suifur, WL 🦠		0.003	0.002	0.016	0.08	0.25	0.54	1.02
Mercaptana, ppm	,	9.9	<1	<1	্ব		,	
H ₂ S. ppm	• •	<1	10.6	27.1	26.9			
Organic Cl. ppm		2.2	3.8	3.2				'
Apiline Point T	i			127.4	145.4	156.4	192.9	
Neutralisanon No	. 1				0.04	0.09		
Cetane Index	1				47.09	52.72		
Naphthalenes, vol	. 3				4.51	8.74		
Smoke pount	i i	·			16.8	14.7		4.
Nitrogen, Wt 4	I				0.0004	0.007	0.142	0.555
Viacoury:		,						
cSt (SUS) 77	P				7.40(50.0)			
100°	P				1.85(32.1)	4.93(42.2)		
130°						3.37(37.3)	25.07(119.9	
180°	7 1						10.03(59.3)	T
210°		****						884.5(-
250°			,					884.6(
Freezing Point, T	, 1				-31.0			1
Cloud Point T	- 1					26	118	
Pour Point, T	T I				·	25	100	
Ni, ppm	11						Sot Detectable	35.5
V. ppm	·						Fot Derectable	
Fe. ppm					· · · · · · · · · · · · · · · · · · ·		Sot Detectable	
Con. Car. Res. W	2 3							

Data current as of September 19, 1986, but subject to change.

*(c), calculated from fraction results.

C₅-175°F C₅-375°F

Whole crude lead content: 0.006 ppm.

Research Octane Number: 70.9 52.6

Motor Octane Number: 67.2 48.6

Vo1.%

0.150 0.375 0.020 0.034

Gas Chromatographic Analysis

SPR BRYAN MOUND SWEET

			Distillate fractio	ne, ASTM D 2002	!		
		Cg-175° F Val. %	175-250° F Vol. %	250-375° F Val. %	375-420° F Vol. %		
* Total Parel		43.1 36.0	23.8 25.5	TBD ⁺	TBD		
Total Ro-p		2.4	8.6				1
Total Neot		18.5	46.1				
Total Olefi		0.0	0.0				
Total Union		0.0	0.0				
Pereffine:	C1	0.0	0.0				
	æ	0.0	0.0	1			
	2222 2222	0.0	0.0	Ì			
	C4	1.4	0.1	1		Debutan	
4	CS	18.5	0.4			Frect	ion
	C S	22.4	4.2	1	1		
	C7	0.8	14.4			Component	Vol. %
	CI	0.0	4.8		٠.		
	C)	0.0	0.0	I		Mithene	-
	C10	0.0	0.0	1		Ethene	0.0
	C11	0.0	0.0			Propene	13.8
	C12	0.0	0.0			i-Butane n-Butane	11. 5 39.4
leo-pereffine:	C4	0.0	0.0	l		i-Pentane	18.0
	ČŠ	8.9	0.2	1	1	n-Pentane	, 15.1
	ä	24.2	2.1		1	Cr	1.8
	C7	2.9	12.7		İ		
	CI	0.0	10.5	1	1	,	ł
	ä	0.0	0.0		İ		
	C10	0.0	0.0	1	1		
•	C11	0.0	0.0			Whole Cru	de B-T-X
Ammetics:	CS	2.0	0.7			-	
	C7	9.4	4.3	1		Component	<u> Vo1 </u>
	CS	0.0	0.7		į		
	01	0.0	0.0			Benzene	0.15
	C10	0.0	0.0	i '		Toluene	0.37
	C11	0.0	0.0	1		Ethylbenze	
	C12	0.0	0.0		1	Xylenes	0.03
Nephthenes:		2.1	0.1 8.2	İ			
•	C 5	14.3	24.7	1	Ì		
	C	2.1	120				
	3	0.0	0.0				
	C10	0.0	0.0		İ		1
	C11	0.0	0.0	j			
	C12	0.0	0.0				
Oteffrid:	C4	0.0	0.0				
	CS	0.0	0.0	1	-		
	08 C7	0.0	0.0	1	Į.		
	C7	0.0	0.0	1			
	C8	1 00	00	1	1		1

^{*}The gas chromatographic PIANO method used provides for surtion and identification of components up to a nominal n-C₁₂ (420 F).

⁺To be determined.

CRUDE OIL ANALYSIS

Stream SPR Weeks Island Sour	Terminal DOE St. James Terminal, St. James, LA
------------------------------	--

					Crude				
Specific Grav	rity	0.88	21 Ni	ppm	14.0(15.8)	* ERVP, pais	@ 100° F _ 4.	85	
API Gravity		28.9	v.	ppm	39.2(42.5)	* Neutralizat	_		
_		1.32		ppm	0.7 (1.5)*			3	
Salfar, Wt. 9						3,			
Nitrogen, Wt.		0.21	v.	c. Cl, ppm	(e)• 0.3	Mercaptana	, ppm (c)*6.	3	
Con. Car. Res	. WL 5	(c) 4.97	O.1	D. Color	25,150	Viscosity:	77° F 18.02 c	st 89.5 SUS	
Pour Point,		_15		P "K"	11.85	1	00° F 11.43 c	St 63.9 SUS	
Fraction		1	2	3	4	6	6	7	
Cut Temp.	હંહ	C5 · 175° F	175° - 250° F	250° · 375° F	375° - 530° F	530° - 650° F	1029• p	Residuum	
Vol mis	117.7	132.0	252.0	455.6	642.3	526.7	1330.0	835.3	
Vol. %	2.7	3.1	5.9	10.6	15.0	12.3	31.0	19.5	
Vol. Sum %	2.7	5.8	11.7	22.3	37.3	49.6	80.6	100.1	
Wt grams	70.6	91.3	185.7	354.3	533.0	458.2	1233.7	855.3	
WL S	1.9	2.4	4.9	9.3	14.1	12.1	32.6	22.6	
Specific Gravity	0.6	0.6918	0.7370	0.7777	0.8298	0.8699	0.9276	1.024	
API Gravity		73.0	60.5	50.4	39.0	31.2	21.0	6.7	
Sulfur, Wt. %		0.054	0.004	0.043	0.29	0.85	1.58	3.00	
Mercaptans, pps		10.2	17.4	41.8	9.0				
H ₂ S. ppm		<1	2.5	2.3	<1				
Organie Cl. ppm		2.8	2.1	1.7					
Andine Point, 7				119.6	137.4	152.9	173.3		
Neutralization N	c.				0.06	0.07	<u> </u>		
Cetane Index					45.31	47.98	<u> </u>		
Naphthalenes, v	ol. 🤏 📗				4.75	11.77	 		
Smoke point					0.0006	12.7	0.173		
Nitrogen, Wt. %					0.0008	0.013	0.1/3	0,592	
Viscosity: eSt (SUS) 77					2 21/22 7		 		
	PF				2.31(33.7) 1.85(32.1)	5.17(42.9)	<u> </u>		
	7 7				1.03(32.1)	3.48(37.6)	30.96(146.1)		
	4 0					3.46(37.6)	11.58(64.8)		
	7 7						11.30(04.8)	4201(19592)	
	77					· · · · · · · · · · · · · · · · · · ·	 	935,8(+375)	
Freezing Point.					-37.7			- (() () () () () () () ()	
Cloud Point, "F						20	104		
Pour Point, T						20	, 90		
Ni, ppen							Not Detectable	59.8	
V, popus							Not Detectable		
Fe. ppm							Not Detectable	6.5	
Con. Car. Res.,	WE S					,	0.34	25	

Data current as of September 19, 1986, but subject to change.

*(e), calculated from fraction results.

C5-175°F C5-375°F Whole crude lead content: 0.014 ppm. 65.8 50.0 Research Octane Number: Motor Octane Number: 62.4 47.3

SPR WEEKS ISLAND SOUR

	-1		Distillate fraction	ML ASTM D 2892	
		Cg-175° F Vol. %	175-250° F Vol. %	250-375° F Vol. %	375-420° Vol. %
* Total Par	affine	41.0	27.7	TBD ⁺	TBD
Total leo	-peraffine	36.6	27.5		1
Total Arc		4.4	10.0	1]
Total Na		18.0	34.7	1	
Total Oli		0.0	0.0	ļ	j
Total Uni	Inowns	0.0	0.0	'	
Parettina:	C1	0.0	0.0		
	នន	0.0	0.0	[[
	C	0.0	0.0	,	,
	333	0.2	0.0	j]
	CS	14.4	0.3	}	j
	C7	25.4	4.7]	
	ä	1.1 0.0	16.3 6.4	1	
•	ä	0.0	00		
	C10	0.0	0.0		
	C11	0.0	0.0	·	
	C12	0.0	0.0		
leo-paraffins	. ca	0.0	0.0		
	CS	5.0	0.1		
	CS	26.9	2.0		
	C7	4.6	13.3		
	C9	0.0	11.2		
	CO	0.0	0.9		
r	C10 C11	0.0	0.0		
		0.0	0.0		
Arometics:	C8	3.7	14		
	C7	0.7	7.4	·	
	CS CS	0.0	1.2		
	C10	0.0 0.0	0.0		
i	C11	0.0	0.0	1	
	C12	0.0	0.0	,	•
Nephthenes:	cs	2.9	0.1		
rampiliti marinas.	∝ l	13.1	7.3		
	C7	2.0	18.8	į	
4	C8	0.0	8.5		
	C3	0.0	0.0		
•	C10	0.0	0.0	j	
,	C11	0.0	0.0	J	
	C12	0.0	0.0		
Olefins:	C4	0.0	0.0		
	ය	0.0	0.0	1	,
	C8	0.0	0.0		
	C7	0.0	00	ĺ	
	C8	0.0	0.0	<u> </u>	

Debutanization Fraction				
Component Vol. %				
Methane				
Ethene	0.2			
Propene	13.2			
i-Butane	8.0			
n-Butane	32.4			
i-Pentane 17.9				
n-Pentane	21.6			
Cer	6.6			

who re crude	D-1-4
Component	<u>Vol.9</u>
Benzene Toluene Ethylbenzene Xylenes	0.197 0.458 0.025 0.048
1	

^{*}The gas chromatographic PIANO method used provides for elution and identification of components up to a nominal n-C₁₂ (420° F).

†To be determined.

10.82(62.0)

U. S. DEPARTMENT OF ENERGY, STRATEGIC PETROLEUM RESERVE

CRUDE OIL ANALYSIS

Stream SPR West Hackberry Sour Terminal Sun Marine Terminal, Nederland, TX

					Crude			
Specific Gravity		0.8599 Ni. ppm 33.1 V, ppm		6.5(6.6)* 25.9(24.7)*	ERVP, peia (9 100° F 4.1		
API Gravity						•		
Selfer, Wt. %		1.40		, ppm	5.8(6.1)*	H ₂ S, ppm (c)		
Nitrogen, Wt.	%	0.140	O ₇	g. Cl, ppm	(c) 0.4	Mercaptane,	ppm (c)*	7
				18,300	Viceseiter T	F 8.88 cs	54.9 STI	
Con. Car. Res., Wt. % (_	11.90			
Pour Point, T	•	<u> </u>	U	OP "K"	11.90	100	o F _ 6.27 cs	5US
Practice		1	2	3	4	6	4 .	7
Cut Temp.	G.	C5 · 175° ₹	175° - 250° F	250° · 375° F	375° - 530° F	530° - 660° F	650°. 1050°P	Resideum
Vol mie	28.5	192.7	324.5	591.7	709.0	523.3	1265.3	635.9
Vol. 4	2.9	4.4	7.4	13.6	16.3	12.0	29.0	14.6
Vol. Sum 🤏	2.9	7.3	14.7	28.3	44.6	56.6	85.6	. 100.2
Wt . grams	77.1	130.4	235.2	455.4	579.0	449.6	1166.5	646.7
WL S	2.1	3.5	6.3	12.1	15.4	12.0	31.1	17.2
Specific Gravity	0.6	0.6766	0.7249	0.7696	0.8167	0.8591	0.9219	1.017
API Gravity	11	77.6	63.7	52.4	41.8	33.2	22.0	7.6
Suifur, Wt. %		0.020	0.010	0.040	0.32	1.02	1.96	38
Mercaptans, ppm		〈 1	43.1	120.4	41.4			
H ₂ S. ppm	- 1	16.8	3.7	3.2	<1		1	
Organic Cl. ppm		1.9	1.6	1.7				
Andine Point T				128.0	145.8	162.5	180.5	
Neutralization N	0.			,	0.04	0.07		
Cetane Index	i				50.36	51.11		
Naphthalenes, vo	d. 🤏 🖠				3.97	11.49		
Smoke point	!		i		20.1	15.3		
Nitrogen, Wt. %					0.0005	0.013	0.146	0.551
Viscosity:								
ಚು(SUS) 77	P 1				2.24(33.4)			

Pour Point. T	20	50	
Ni, ppos		Not Detectable	39 2
V, ppm		Not Detectable	:
Fe. ppm		Not Detectable	35.2
Con. Car. Res., Wt. %			31.3
Data current as of September 19, 1986, but subject to cl	nange.		_

-31.9

Whole crude lead content: 0.025 ppm. Research Octane Number: 62.9 43.6 Motor Octane Number: 59.6 40.9

130° F

180° F

" (c), calculated from fraction results.

Freezing Point, "F

SPR WEST HACKBERRY SOUR

		Distillate fractions, ASTM D 2892					
		Cg-175° F Vol. %	175-250° F Vol. %	250-375° F Vol. %	375-420° 7 Val. %		
* Total Pa		46.7	34.0	TBO+	TBD		
Total lec	-peratfine	39.1	22.5				
Total Ar		2.9	7.5				
	phthenes	11.3	25.9				
Total Of Total Un		0.0 0.0	0.0 Q.1				
_	· [•					
Pareffing:	<u>C1</u>	0.0	0.0				
	88	0.0	0.0				
	G	. 0.0	0.0				
	33	0.5	0.0				
,	3	17.2	0.3				
	CE C7	28.0	5.4				
	ä	0.9 0.0	20.5 7.8				
	ä	0.0	0.0				
	C10	0.0	. 0.0				
	C11	0.0	0.0				
	C12	0.0	0.0				
iso-peratting		0.0					
rac paramin	S	6.4	0.0 0.1	1			
	ã	28.3	2.4	1			
	C7	4.3	16.1				
	Ca	0.0	13.2	i			
-	CO	0.0	0.8	İ			
	C10.	0.0	0.0				
	C11	0.0	0.0	. [
Aromatics:	C8	2.0	0.8	ĺ			
	C7	0.9	5.6	{			
	Ca	0.0	1.1				
	Ca	0.0	0.0	j			
	C10	0.0	0.0				
,	"C11	0.0	0.0				
	C12	0.0	0.0				
Naphthenes		2.0	0.1				
	C6	8.3	4.7	1			
	C7	1.1	13.2	1			
	C8	0.0	7.9				
	CS	0.0	0.0				
	C10	0.0	0.0				
•	C11	0.0	0.0	1			
	C12	0.0	0.0				
Olefine:	C4	0.0	0.0	ŀ			
	CS	0.0	0.0	[
	CS	0.0	0.0	j			
	C7	0.0	0.0	ļ			

Debutanization Fraction					
Component	Vol. %				
Methane.	-				
Ethane	0.2				
Propene	9.0				
i-Butane	7.6				
n-Butane 34.6					
I-Pentane	20.6				
n-Pentane 24.6					
Ce+ 3.4					

MUO	16	Cru	ae	B-	- X
-					

Component	<u>Vol.3</u>
Benzene	0.147
Toluene	0.454
Ethylbenzene	0.034
Xylenes	0.051

^{*}The gas chromatographic PIANO method used provides for elution and identification of components up to a nominal n-C₁₂ (420° F) [†]To be determined.

CRUDE OIL ANALYSIS

Stream SPR West Hackberry Sweet Terminal Sun Marine Terminal, Nederland, TX

API Gravity Selfur, Wt. % Nitrogen, Wt. % Con. Car. Res., Wt. % (c)			Crude			
Color Colo	8.1 V 0.28 F 0.090 C	ii, ppm ', ppm 'e, ppm 'rg. Cl, ppm 'D. Color	1.6(1.8)* 2.7(3.4)* 2.6(3.4)* (c)* 0.9 8,240 12.00	Neutralization H ₂ S, ppm (continued Marcaptans, Viscosity: 7	@ 100° F 4.19 on No. 0.14 on No. 0.5 ppm (c)° 0.7 7° F 4.88 686 0° F 3.60 686	4
Col. Col.	1 2	1 3	. 4	ś	6	7
Cast Temp. Cas		250°	375° -	530° -	660°·	Renduum
Vol mis		375° F	530° F	660° P	1050°F	382.1
Vol. % 4,7 6,3 Vol. Sum % 4,7 11. Wt. grams 115.1 173 Wt. % 3,4 5.1 Specific Gravity 0.6 0.6 API Gravity 76. Sulfur, Wt. % 0.0 Mercaptans, ppm (1 H ₂ S, ppm (1) Crganic Cl. ppm 1.5 Aniline Point, T Neutralization No. Cetane Index Naphthalenes, vol. % Smoke point Nitrogen, Wt. % Viscosity: cSt (SUS) 77° F 100° F 130° F 210° F 250° F Freezing Point, T Cloud Point, T Pour Point, T Pour Point, T		546.8	664.2	499.5	1131.5	9.4
## 15.1 173 ## 3.4 5.1 Specific Gravity 0.6 0.6 API Gravity 76. Sultur, Wt. # 0.0 Mercaptans, ppm (1 H ₂ S, ppm (1, 5 Aniline Point, F Neutralization No. Cetane Index Naphthalenes, vol. # Smoke point Nitrogen, Wt. # Viaconty: cSt (SUS) 77° F 130° F 130° F 210° F Freezing Point, F Cloud Point, F Pour Point, F P	9.4	13.5	16.4	12.3	27.9	99.9
Wt grams 115.1 173 Wt. % 3.4 5.1	0. 20.4	33.9	50.3	62.6	90.5	378.7
Wt % 3.4 5.1 Specific Gravity 0.6 0.6 API Gravity 76. Sulfur. Wt % 0.0 Mercaptans. ppm < 1 Type 1.5 Aniline Point. T Neutralization No. Cetane Index Naphthalenex, vol. % Smoke point Nitrogen. Wt. % Viacosity: cSt (SUS) 77° F 130° F 130° F 210° F 250° F Freezing Point. T Cloud Point, T Pour Point, TF	.0 280.8	424.9	548.4	427.4	1028.5	11.2
API Gravity 76. Sulfur. Wt. % 0.0 Mercaptans. ppm H2S. ppm Organic Cl. ppm 1.5 Aniline Point, T Neutralization No. Cetane Index Naphthalenes, vol. % Smoke point Nitrogen. Wt. % Viaconty: c5t (SUS) 77° F 130° F 130° F 210° F 250° F Freezing Point, T Cloud Point, T Pour Point, T Pour Point, T 100.00	8.3	12.6	16.2	12.6	30.4	0.991
API Gravity 76. Sulfur. Wt. % 0.0 Mercaptans. ppm H2S. ppm Organic Cl. ppm 1.5 Aniline Point, T Neutralization No. Cetane Index Naphthalenes, vol. % Smoke point Nitrogen. Wt. % Viaconty: cSt (SUS) 77°F 100°F 130°F 180°F 210°F 250°F Freezing Point, T Cloud Point, T Pour Point, T Pour Point, T T 100° P 120°F 12	819 0.7400	0.7770	0.8256	0.8556	0.9090	11.3
Sulfur, Wt % 0.0 Mercaptans, ppm		50.6	39.9	33.9	24.2	1.09
Mercaptans. ppm (1) H2S. ppm (1) Organic Cl. ppm 1.5 Aniline Point. F Neutralization No. Cetane Index Naphthalenes, vol. S Smoke point Nitrogen, Wt. S Viscosity: cSt (SUS) 77° F 130° F 130° F 210° F 250° F Freezing Point. F Cloud Point, F Pour Point, F	20 0.001	0.004	0.04	0.23	0.53	1.09
H2S. ppm (1 Organic Cl. ppm 1.5 Aniline Point, F Neutralization No. Cetane Index Naphthalenes, vol. N Smoke point Nitrogen, Wt. N Viaconty: cSt (SUS) 77° F 130° F 130° F 210° F 250° F Freezing Point, F Cloud Point, F Pour Point, F	(1	<1	4.5			
Organic Cl. ppm 1.5 Aniline Point, "F Neutralization No. Cetane Index Naphthalenes, vol. % Smoke point Nitrogen, Wt. % Viscosity: cSt (SUS) 77" F 100" F 130" F 210" F 250" F Freezing Point, "F Cloud Point, "F	2.4	2.4	<u> </u>			
Aniline Point, "F Neutralization No. Cetane Index Naphthalenes, vol. % Smoke point Nitrogen, Wt. % Viscosity: cSt (SUS) 77" F 100" F 130" F 210" F 250" F Freezing Point, "F Cloud Point, "F	4.0	4.1			192.4	
Cetane Index Naphthalenes, vol. % Smoke point Nitrogen, Wt. % Viscosity: cSt (SUS) 77° F 100° F 130° F 210° F 210° F 750° F Freezing Point, T Cloud Point, T Pour Point, T		122.9	142.9	164.5	192.4	
Naphthalenes, vol. % Smoke point Nitrogen, Wt. % Viscosity: cSt (SUS) 77° F 100° F 130° F 210° F 210° F 250° F Freezing Point, T Pour Point, T			0.05	0.10		
Smoke point Nitrogen, Wt. % Viaconity: cSt (SUS) 77° F 100° F 130° F 210° F 220° F Freezing Point, T Cloud Point, T Pour Point, T			46.91	52.23		
Smoke point Nitrogen, W. % Viscosity: cSt (SUS) 77° F 100° F 130° F 210° F 220° F Freezing Point, T Cloud Point, T Pour Point, T			4.96	9.52	<u> </u>	
Viscosity: cSt (SUS) 77" F 100" F 130" F 180" F 210" F 250" F Freezing Point, "F Cloud Point, "F			16.8	15.8 0.007	0.130	0.5 →
Viscosity: cSt (SUS) 77" F 100" F 130" F 180" F 210" F 250" F Freezing Point, "F Cloud Point, "F		<u> </u>	0.0005	0.007	0.130	0.0
100° F 130° F 180° F 210° F 250° F Freezing Point. 'T Cloud Point, 'T Pour Point, 'F						
130° F 180° F 210° F 250° F Freezing Point. "F Cloud Point, "F			2.33(33.6)	1 05//2 2	 	
180° F 210° F 250° F Freezing Point. "F Cloud Point, "F Pour Point, "F	<u>'</u>		1.85(32.1)	4.95(42.2)	25.96(123.7)	
210° F 250° F Freezing Point, °F Cloud Point, °F Pour Point, °F			ļ	3.37(37.3)	10.38(60.5)	
250° F Freezing Point, T Cloud Point, T Pour Point, T			<u> </u>		10.38(00.37	701.9(327-)
Freezing Point, T Cloud Point, T Pour Point, T			 		 	204.96(955)
Cloud Point, T			-32.8			200,70(7.2)
Pour Point, T		_	-34.0	22	120	
			 	20	100	
Ni, ppm					Not Detectabl	15.2
			-		Not Detectabl	F
V, ppes	<u> </u>				Not Detectabl	
Fe. ppm Con. Car. Res., Wt. %					POL DEFECTOR	10

Data current as of September 19, 1986, but subject to change. *(c), calculated from fraction results.

C₅-175°F C₅-375°F

Whole crude lead content: 0.004 ppm.

Research Octane Number: Motor Octane Number: 68.5 53.3 63.9 30.8

SPR WEST HACKBERRY SWEET

Val. % Val. % Val. %	-420° F /ol. %
Vol. % Vol. %	
* Total Paretfins Total Seo-paratfins Total Aromatics 3.8 Total Aromatics 17.5 Total Maphthenes Total Olefins Total Unknowns C2 0.0 C3 0.0 C4 1.7 0.0 C5 20.3 0.0 C6 21.3 4.1 C7 0.8 14.9 C8 0.0 C9 0.0 C10 0.0 C11 0.0 0.0 C12 0.0 0.0 C11 0.0 0.0 C12 0.0 0.0 C11 0.0 0.0 C12 0.0 C12 0.0 0.0 C11 0.0 0.0 C12 0.0 C12 0.0 0.0 C11 0.0 0.0 C12 0.0 C12 0.0 0.0 C11 0.0 0.0 C12 0.0 0.0 C11 0.0 0.0 C12 0.0 0.0 C11 0.0 0.0 C12 0.0 0.0 C11 0.0 0.0 C12 0.0 0.0 C11 0.0 0.0 C12 0.0 0.0 C11 0.0 0.0 C12 0.0 0.0 C11 0.0 0.0 C12 0.0 0.0 C11 0.0 0.0 C11 0.0 0.0 C12 0.0 0.0 C11 0.0 0.0 C12 0.0 0.0 C11 0.0 0.0 C11 0.0 0.0 C12 0.0 0.0 C11 0.0 0.0 C11 0.0 0.0 C11 0.0 0.0 C11 0.0 0.0 C11 0.0 0.0 C11 0.0 0.0 C11 0.0 0.0 C11 0.0 0.0 C11 0.0 0.0 C11 0.0 0.0 C11 0.0 0.0 C11 0.0 0.0 0.0	/al. %
Total Re-paratities Total Aromatics Total Maphthenes Total Clefins Total Unknowns C1 C2 C3 C4 1.7 C6 20.3 C8 21.3 41 C7 C8 C9 C0 C10 C10 C10 C10 C10 C10	
Total Separatifies Total Aromatics Total Naphthenes Total Olefins Total Unknowns C1 C2 C3 C4 1.7 C5 20.3 C3 C4 1.7 C5 20.3 C8 21.3 41. C7 C8 C9 C0 C0 C1 C0 C0	TBD
Total Aromatics Total Naphthenes Total Olefins Total Unknowns C1 C2 C3 C4 C1 C3 C4 C7 C8 C8 C9 C0 C10 C0 C10 C0 C10 C0 C10 C10 C11 C0 C12 C0 C10 C1	
Total Nephthenes Total Olefins Total Unknowns 0.0 C2 0.0 C3 0.0 C4 1.7 0.0 C8 20.3 0.3 C8 21.3 41 C7 0.8 14.9 C8 0.0 C9 0.0 C10 0.0 C11 0.0 C12 0.0 C3 0.0 C11 0.0 C12 0.0 C12 0.0 C12 0.0 C12 0.0 C13 0.0 C14 0.0 0.0 C15 0.0 C10 0.0 C11 0.0 C12 0.0 C12 0.0 C12 0.0 C13 C25 0.0 C3 0.0 C4 0.0 C5 0.0 C10 0.0 C11 0.0 0.0 C11 0.0 0.0	
Total Unknowns 0.0 0.0 Paraffins: C1 0.0 0.0 C2 0.0 0.0 C3 0.0 0.0 C4 1.7 0.0 C5 20.3 0.3 C8 21.3 4.1 C7 0.6 14.9 C8 0.0 5.6 C9 0.0 0.0 C11 0.0 0.0 C11 0.0 0.0 C12 0.0 0.0 C12 0.0 0.0 C12 0.0 0.0 C3 0.1 C5 22.5 1.7 C7 2.9 12.3 C8 0.0 9.4 C9 0.0 0.8 C10 0.0 0.0 C10 0.0 0.8 C10 0.0 0.0	
Paratfins: C1 0.0 0.0 0.0 C2 0.0 0.0 C3 0.0 0.0 C4 1.7 0.0 C5 20.3 0.3 C5 21.3 4.1 C7 0.6 14.9 C8 0.0 0.0 C10 0.0 0.0 C11 0.0 0.0 C12 0.0 0.0 C12 0.0 0.0 C12 0.0 0.0 C12 0.0 0.0 C5 9.5 0.1 C5 9.5 0.1 C6 22.5 1.7 C7 2.9 12.3 C8 0.0 9.4 C9 0.0 0.8 C10 0.0 0.0 0.0	
C2	
C8 0.0 5.6 C9 0.0 C10 0.0 C11 0.0 C11 0.0 C12 0.0 C12 0.0 C12 C8 9.5 0.1 C8 22.5 1.7 C7 2.9 12.3 C8 0.0 9.4 C9 0.0 0.8 C10 0.0 0.0	
C8 0.0 5.6 C9 0.0 C10 0.0 C11 0.0 C11 0.0 C12 0.0 C12 0.0 C12 C8 9.5 0.1 C8 22.5 1.7 C7 2.9 12.3 C8 0.0 9.4 C9 0.0 0.8 C10 0.0 0.0	
CS 0.0 5.6 CD 0.0 0.0 C10 0.0 0.0 C11 0.0 0.0 C12 0.0 0.0 C12 0.0 0.0 Seo-paraffins: C4 0.2 0.0 CS 9.5 0.1 CS 22.5 1.7 C7 2.9 12.3 CS 0.0 9.4 CD 0.0 0.8 C10 0.0 0.0	
CS 0.0 5.6 CS 0.0 0.0 C10 0.0 C11 0.0 0.0 C12 0.0 C12 0.0 C12 0.0 C12 0.0 C12 CS 9.5 0.1 CS 22.5 1.7 C7 2.9 12.3 CS 0.0 9.4 CS 0.0 9.4 CS 0.0 0.8 C10 0.0 0.0	
CS 0.0 5.6 CS 0.0 0.0 C10 0.0 C11 0.0 0.0 C12 0.0 C12 0.0 C12 0.0 C12 0.0 C12 CS 9.5 0.1 CS 22.5 1.7 C7 2.9 12.3 CS 0.0 9.4 CS 0.0 9.4 CS 0.0 0.8 C10 0.0 0.0	
CS 0.0 5.6 CS 0.0 0.0 C10 0.0 C11 0.0 0.0 C12 0.0 C12 0.0 C12 0.0 C12 0.0 C12 CS 9.5 0.1 CS 22.5 1.7 C7 2.9 12.3 CS 0.0 9.4 CS 0.0 9.4 CS 0.0 0.8 C10 0.0 0.0	
C9 0.0 0.0 0.0 C10 0.0 C11 0.0 0.0 C12 0.0 0.0 C12 0.0 C5 9.5 0.1 C5 22.5 1.7 C7 2.9 12.3 C8 0.0 9.4 C9 0.0 0.8 C10 0.0 0.0	
C10	
C11 0.0 0.0 0.0 C12 0.0 0.0 C5 0.1 C8 22.5 1.7 C7 2.9 12.3 C8 0.0 9.4 C9 0.0 0.8 C10 0.0 0.0 0.0	
C12 0.0 0.0 Seo-paraffins: C4 0.2 0.0 C5 9.5 0.1 C8 22.5 1.7 C7 2.9 12.3 C8 0.0 9.4 C9 0.0 0.8 C10 0.0 0.0	
Sep-paraffins: C4	
CS 9.5 0.1 CS 22.5 1.7 C7 2.9 12.3 CS 0.0 9.4 C9 0.0 0.8 C10 0.0 0.0	
CS 22.5 1.7 C7 2.9 12.3 CS 0.0 9.4 C9 0.0 0.8 C10 0.0 0.0	
C7	
CS 0.0 9.4 C9 0.0 0.8 C10 0.0 0.0	
C9 0.0 0.8 C10 0.0 0.0	
C10 0.0 0.0	
Arometics: C8 3.1 1.2	
C7 0.5 6.6	
CB 0.0 1.0	
C9 0.0 0.0	
C10 0.0 0.0	•
C11 0.0 0.0	
C12 0.0 0.0	
Naphthenes: C5 2.9 0.1	
C6 13.1 8.8	
C7 1.5 22.8	
C9 0.0 10.0	
C9 0.0 0.0	
C10 0.0 0.0	
C11 0.0 0.0 0.0	
C12 0.0 0.0	
Otefine: C4 0.0 0.0	
CS 0.0 0.0	
CS 0.0 0.0 C7 0.0 0.0	
C7 0.0 0.0 C8 0.0	

Debutanization Fraction		
Component	Val. %	
Methane.	-	
Ethene	0.0	
Propene	9.7	
Heutene	7.8	
n-Butane	35.4	
I-Pentane	17.4	
n-Pentane	21.5	
Cr	8.2	

Whole Crude	B-T-X
Component	<u>vo1.%</u>
Benzene Toluene Ethylbenzene Xylenes	0.308 0.652 0.025 0.051

^{*}The gas chromatographic PIANO method used provides for elution and identification of components up to a nominal n-C₁₂ (420° F)

⁺To be determined.

DEPARTMENT OF DEFENSE	CDR
·	US ARMY TANK-AUTOMOTIVE CMD
DEFENSE TECHNICAL INFORMATION	ATTN: AMSTA-RG (MR WHEELOCK) 1
CTR	AMSTA-TSL (MR BURG) 1
	AMSTA-MTC (MR GAGLIO),
ALEXANDRIA VA. 22314	AMSTA-MC, AMSTA-MV 1
DERT OF DECEME	AMSTA-RGP (MR RAGGIO/
DEPT. OF DEFENSE ATTN: OASD/A&L (EP)	MR McCARTNEY) I
(MR DYCKMAN)	AMSTA-MLF (MR KELLER) 1 WARREN MI 48397-5000
WASHINGTON DC 20301-8000	WARREN WI 48327-3000
WASHINGTON DC 20301-8000	DIRECTOR
CDR	US ARMY AVIATION RESEARCH &
DEFENSE FUEL SUPPLY CTR	TECHNOLOGY ACTIVITIES (AVSCOM)
	ATTN: SAURT-R (MR ANDRE)
	AMES RESEARCH CENTER
CAMERON STATION	(MAIL STOP 207-5)
ALEXANDRIA VA 22304-6160	MOFFETT FIELD CA 94035-1099
•	
DOD	CDR
	US READINESS COMMAND
· · · · · · · · · · · · · · · · · · ·	ATTN: J4-E
WASHINGTON DC 20301	MACDILL AIR FORCE BASE FL 33608
DEFENSE ADVANCED RES PROJ	DIRECTOR
AGENCY	US ARMY MATERIEL CMD
	MATERIEL SUPPORT ACTIVITY
1400 WILSON BLVD	ATTN: AMXTB-T (MR STOLARICK)
ARLINGTON VA 22209	FORT LEWIS WA 98433
	CDR
DEPARTMENT OF THE ARMY	US ARMY GENERAL MATERIAL &
	PETROLEUM ACTIVITY
CDR	ATTN: STRGP-F (MR ASHBROOK)
U.S. ARMY BELVOIR RESEARCH,	STRGP-FE, BLDG 85-3
DEVELOPMENT & ENGINEERING CTR	•
ATTN: STRBE-VF 10 STRBE-BT 2	
FORT BELVOIR VA 22060-5606	NEW COMBERLAND PA 17070-3008
TORT BEEVOIR VII EEGOO-7000	HQ, DEPT. OF ARMY
HG, DEPT OF ARMY	ATTN: DAEN-DRM
ATTN: DALO-TSE (COL BLISS)	
DALO-TSZ-B (MR KOWALCZYK) I	
DALO-AV I	CDR
DAMO-FDR 1	US ARMY LABORATORY COMMAND
DAMA-ART (MR APPEL)	ATTN: AMSLC-TP-PB (DR GONANO) 1
WASHINGTON DC 20310-0005	AMSLC-TP-AL (LTC SCHRADER) I
	ADELPHI MD 20783-1145
CDR	
US ARMY MATERIEL COMMAND	CDR
	US ARMY FORCES COMMAND
AMCSM-WST 1	-
5001 EISENHOWER AVE	AFLG-POP 1
ALEXANDRIA VA 22333-0001	FORT MCPHERSON GA 30330

CDR US ARMY RES & STDZN GROUP (EUROPE) ATTN: AMXSN-UK-RA (DR OERTEL) AMXSN-UK-SE BOX 65 FPO NEW YORK 09510	1 1	CDR US ARMY RESEARCH OFC ATTN: SLCRO-EG (DR MANN) SLCRO-CB P O BOX 12211 RSCH TRIANGLE PARK NC 27709-2211	1
CDR US CENTRAL COMMAND ATTN: CINCCEN/CC J4-L MACDILL AIR FORCE BASE FL 33608 CDR	1	CDR US ARMY LEA ATTN: DALO-LEP NEW CUMBERLAND ARMY DEPOT NEW CUMBERLAND PA 17070	1
US ARMY YUMA PROVING GROUND ATTN: STEYP-MT-TL-M (MR DOEBBLER) YUMA AZ 85364-9103 PROJ MGR, BRADLEY FIGHTING	i	CDR US ARMY GENERAL MATERIAL & PETROLEUM ACTIVITY ATTN: STRGP-PW (MR PRICE) BLDG 247, DEFENSE DEPOT TRACY TRACY CA 95376-5051	1
VEHICLE SYS ATTN: AMCPM-FVS-M WARREN MI 48397	1	CDR US ARMY FOREIGN SCIENCE & TECH CENTER	
CDR US ARMY DEVELOPMENT AND EMPLOYMENT AGENCY ATTN: MODE-FDD-CSSB (MAJ GROSSMAN) FT LEWIS VA 98433-5000 PROJ MGR, MOBILE ELECTRIC POWER ATTN: AMCPM-MEP-TM 7500 BACKLICK ROAD SPRINGFIELD VA 22150	1	ATTN: AIAST-RA-ST3 (MR BUSI) AIAST-MT-1 FEDERAL BLDG CHARLOTTESVILLE VA 22901 HQ, US ARMY T&E COMMAND ATTN: AMSTE-TO-O AMSTE-CM-R-O AMSTE-TE-T (MR RITONDO) ABERDEEN PROVING GROUND MD 21005-5006	1 1 1 1
CDR US ARMY EUROPE & SEVENTH ARMY ATTN: AEAGG-FMD AEAGD-TE APO NY 09403 CDR THEATER ARMY MATERIAL MGMT	1	CDR, US ARMY TROOP SUPPORT COMMAND ATTN: AMSTR-ME AMSTR-S AMSTR-E AMSTR-WL (MR BRADLEY) 4300 GOODFELLOW BLVD ST LOUIS MO 63120-1798	1 1 1 1
CENTER (200TH)-DPGM DIRECTORATE FOR PETROL MGMT ATTN: AEAGD-MMC-PT-Q (MR CARLONE) APO NY 09052	i	TRADOC LIAISON OFFICE ATTN: ATFE-LO-AV 4300 GOODFELLOW BLVD ST LOUIS MO 63120-1798	
HQ, EUROPEAN COMMAND ATTN: J4/7-LJPO (LTC McCURRY) VAIHINGEN, GE APO NY 09128	1	HQ US ARMY TRAINING & DOCTRINE CMD ATTN: ATCD-SL-5 FORT MONROE VA 23651-5000	1

BFLRF No. 224 Page 2 of 4

CDR CONSTRUCTION ENG RSCH LAB		DEPARTMENT OF THE NAVY	
ATTN: CERL-EM CERL-ES (MR CASE) CERL-EH POBOX 4005 = CHAMPAIGN IL 61820	1.1	CDR NAVAL AIR PROPULSION CENTER ATTN: PE-33 (MR D'ORAZIO) P O BOX 7176 TRENTON NJ 06828	1
CDR US ARMY QUARTERMASTER SCHOOL ATTN: ATSM-CD ATSM-TD ATSM-PFS (MR ELLIOTT) FORT LEE VA 23801	1 1	CDR NAVAL SEA SYSTEMS CMD ATTN: CODE 05M4 (MR R LAYNE) WASHINGTON DC 20362-5101	1
CDR US ARMY TRANSPORTATION SCHOOL ATTN: ATSP-CD-MS (MR HARNET) FORT EUSTIS VA 23604-5000	1	CDR DAVID TAYLOR NAVAL SHIP R&D CTR ATTN: CODE 2759 (MR STRUCKO) CODE 2831 ANNAPOLIS MD 21402-5067	1 1
CDR US ARMY WESTERN COMMAND ATTN: APLG-TR FORT SCHAFTER HI 96858	1	CDR NAVAL SHIP ENGINEERING CENTER ATTN: CODE 6764 PHILADELPHIA PA 19112	1
CDR US ARMY LOGISTICS CTR ATTN: ATCL-MS (MR A MARSHALL) ATCL-C FORT LEE VA 23801-6000	1	CDR NAVAL FACILITIES ENGR CTR ATTN: CODE 1202B (MR R BURRIS) 200 STOVAL ST ALEXANDRIA VA 22322	1
PROJECT MANAGER PETROLEUM & WATER LOGISTICS ATTN: AMCPM-PWL 4300 GOODFELLOW BLVD ST LOUIS MO 63120-1798	1	OFFICE OF THE CHIEF OF NAVAL RESEARCH ATTN: OCNR-126 ARLINGTON, VA 22217-5000	1
CDR US ARMY ENGINEER SCHOOL ATTN: ATZA-TSM-G	1	CHIEF OF NAVAL OPERATIONS ATTN: OP 413 WASHINGTON DC 20350	1
ATZA-CD FORT BELVOIR VA 22060-5606 CDR MILITARY TRAFFIC MANAGEMENT	i	CDR NAVY PETROLEUM OFC ATTN: CODE 43 (MR LONG) CAMERON STATION ALEXANDRIA VA 22304-6180	ı
COMMAND ATTN: MT-SA (MR DOWD) WASHINGTON DC 20315	1	DEPARTMENT OF THE AIR FORCE	
CHIEF, U.S. ARMY LOGISTICS ASSISTANCE OFFICE, FORSCOM ATTN: AMXLA-FO (MR PITTMAN) FT MCPHERSON GA 30330	1	HQ, USAF ATTN: LEYSF (COL LEE) WASHINGTON DC 20330	i

HQ AIR FORCE SYSTEMS CMD ATTN: AFSC/DLF ANDREWS AFB MD 20334	FEDERAL AVIATION ADMINISTRATION ATTN: AWS-110 800 INDEPENDENCE AVE, SW WASHINGTON DC 20590	N 1
CDR #	US DEPARTMENT OF ENERGY	
US AIR FORCE WRIGHT AERONAUTICAL	ATTN: MR ECKLUND (CE-151)	1
ATTN: AFWAL/POSF (MR CHURCHILL) I	MR H N GILES (EP-531)	10
WRIGHT-PATTERSON AFB OH 45433-	FORRESTAL BLDG.	
6563	1000 INDEPENDENCE AVE, SW	
0,00	WASHINGTON DC 20585	
CDR	THE CONTRACT OF CTION	
SAN ANTONIO AIR LOGISTICS CTR	ENVIRONMENTAL PROTECTION AGENCY	
ATTN: SAALC/SFT (MR MAKRIS)	AIR POLLUTION CONTROL	1
SAALC/MMPRR 1	2565 PLYMOUTH ROAD	
VELL V AID EOD CE BASE TY 78241	ANN ARBOR MI 48105	

OTHER GOVERNMENT AGENCIES

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LEWIS RESEARCH CENTER CLEVELAND OH 44135